【題目】在五面體中,,.
(1)證明:平面平面;
(2)若,是等腰直角三角形,,求直線與平面所成角的正切值.
【答案】(1)證明見解析(2)
【解析】
(1)根據(jù)且、、、四點共面,得到,由線面平行的判定得到平面,再由線面平行的性質(zhì)定理,根據(jù),,得到平面,再由面面垂直的判定證明.
(2)根據(jù)和,,得到是正方形,建立空間直角坐標(biāo)系,不妨設(shè),得到,,的坐標(biāo),求得平面的一個法向量,代入線面角向量公式求解.
(1)因為且、、、四點共面,所以,
又平面,所以平面,
又平面平面,所以,
因為,所以,
又,所以平面,
而平面,故平面平面.
(2)由和,可知,是正方形,
如圖建立空間直角坐標(biāo)系,
不妨設(shè),則,,,
,,
設(shè)平面的一個法向量為,
則由,且
得,,故令,得
設(shè)直線與平面所成角為,則
,從而
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點,直線與曲線C交于,兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線外的一點(其中,為銳角)作平行于的直線與曲線分別交于.
(Ⅰ) 寫出曲線和直線的普通方程(以極點為原點,極軸為 軸的正半軸建系);
(Ⅱ)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,分別在線段和上,且,為中點,以為折痕將折起,使點到達(dá)點的位置,且平面平面.
(1)求證:平面平面;
(2)點為線段的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為正數(shù),f(x)=|x+a|+|x+b|+|x﹣c|.
(1)若a=b=c=1,求函數(shù)f(x)的最小值;
(2)若f(0)=1且a,b,c不全相等,求證:b3c+c3a+a3b>abc.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動打分(分?jǐn)?shù)為整數(shù),滿分100分),從中隨機抽取一個容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯誤的是( )
A.第三組的頻數(shù)為18人
B.根據(jù)頻率分布直方圖估計眾數(shù)為75分
C.根據(jù)頻率分布直方圖估計樣本的平均數(shù)為75分
D.根據(jù)頻率分布直方圖估計樣本的中位數(shù)為75分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com