設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+2
(Ⅰ)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.
(Ⅲ)設(shè)cn=2nbn,求數(shù)列{cn}的前n項(xiàng)和Sn
(I)由a1=1,Sn+1=4an+2,
有a1+a2=4a1+2,
∴a2=3a1+2=5,
∴b1=a2-2a1=3…(1分)
由Sn+1=4an+2,…①
則當(dāng)n≥2時(shí),有Sn=4an-1+2…②
②-①得an+1=4an-4an-1
∴an+1-2an=2(an-2an-1)…(3分)
又bn=an+1-2an,
∴bn=2bn-1,
∴數(shù)列{bn}是首項(xiàng)b1=3,公比為2的等比數(shù)列.…(4分)
(II)由(I)可得bn=an+1-2an=3•2n-1,
an+1
2n+1
-
an
2n
=
3
4

∴數(shù)列{
an
2n
}是首項(xiàng)為
1
2
,公差為
3
4
的等差數(shù)列,…(6分)
an
2n
=
1
2
+(n-1)×
3
4
=
3
4
n-
1
4

∴an=(3n-1)•2n-2,…(8分)
(III)由(II)知,cn=2nbn=3n•2n,則
Sn=3(1•2+2•22+3•23+…+n•2n),…(10分)①
2Sn=3(1•22+2•23+…+(n-1)•2n+n•2n+1),②
①-②,得
-Sn=3(2+22+23+…+2n)-3n•2n+1,…(12分)
=3(1-n)2n+1-6,
所以Sn=3(n-1)2n+1+6.…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)和,研究一下,能否找到求的一個(gè)公式.你能把你的思想方法作一些推廣嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{an}與{bn}的前n項(xiàng)和分別為Sn與Tn, 若, 則的值是 (       )
A             B               C                     D 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}滿足:an=logn+1(n+2)(n∈N*),定義使a1•a2•a3…ak為整數(shù)的數(shù)k(k∈N*)叫做企盼數(shù),則區(qū)間[1,2013]內(nèi)所有的企盼數(shù)的和為( 。
A.1001B.2026C.2030D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列{an}通項(xiàng)公式為an=
1
n(n+1)
,則數(shù)列{an}的前5項(xiàng)和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和的公式是Sn=
π
12
(2n2+n)

(1)求證:{an}是等差數(shù)列,并求出它的首項(xiàng)和公差;
(2)記bn=sinan•sinan+1•sinan+2,求出數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等比數(shù)列{an}單調(diào)遞增,a1+a4=9,a2a3=8,bn=log22an
(Ⅰ)求an;
(Ⅱ)若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
>0.99,求n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=4,公差d>0,且a1,a5,a21分別是正數(shù)等比數(shù)列{bn}的b3b5,b7項(xiàng).
(Ⅰ)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}對(duì)任意n*均有
c1
b1
+
c2
b2
+
+
cn
bn
=an+1
成立,設(shè){cn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)zn=()n,(n∈N*),記Sn=|z2z1|+|z3z2|+…+|zn+1zn|,則Sn=_________ 

查看答案和解析>>

同步練習(xí)冊(cè)答案