【題目】已知橢圓C: (a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為1.
(1)求橢圓C的方程;
(2)設(shè)P的橢圓C上一點(diǎn),直線PA與Y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N。求證:lANl lBMl為定值。
【答案】
(1)
解:由已知, ,又 ,
解得
∴橢圓的方程為
(2)
解:方法一:
設(shè)橢圓上一點(diǎn) ,則 .
直線 : ,令 ,得 .
∴
直線 : ,令 ,得 .
∴
將 代入上式得
故 為定值.
方法二:
設(shè)橢圓 上一點(diǎn) ,
直線PA: ,令 ,得 .
∴
直線 : ,令 ,得 .
∴
故 為定值
【解析】(1)運(yùn)用橢圓的離心率公式和三角形的面積公式,結(jié)合a,b,c的關(guān)系,解方程可得a=2,b=1,進(jìn)而得到橢圓方程;(2)方法一、設(shè)橢圓上點(diǎn)P(x0 , y0),可得x02+4y02=4,求出直線PA的方程,令x=0,求得y,|BM|;求出直線PB的方程,令y=0,可得x,|AN|,化簡(jiǎn)整理,即可得到|AN||BM|為定值4.方法二、設(shè)P(2cosθ,sinθ),(0≤θ<2π),求出直線PA的方程,令x=0,求得y,|BM|;求出直線PB的方程,令y=0,可得x,|AN|,運(yùn)用同角的平方關(guān)系,化簡(jiǎn)整理,即可得到|AN||BM|為定值4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足.
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)直線的參數(shù)方程是(為參數(shù)),其中. 與交于點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù)(, ),給出以下四個(gè)論斷:
①的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點(diǎn)對(duì)稱;④的圖象關(guān)于直線對(duì)稱.以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題(寫成“”的形式)__________.(其中用到的論斷都用序號(hào)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用 (萬元),有如下的統(tǒng)計(jì)數(shù)據(jù)由資料知對(duì)呈線性相關(guān),并且統(tǒng)計(jì)的五組數(shù)據(jù)得平均值分別為,,若用五組數(shù)據(jù)得到的線性回歸方程去估計(jì),使用8年的維修費(fèi)用比使用7年的維修費(fèi)用多1.1萬元,
(1)求回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求證:PD 平面PAB;
(2)求直線PB與平面PCD所成角的正弦值;
(3)在棱PA上是否存在點(diǎn)M,使得BMll平面PCD?若存在,求 的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等比數(shù)列,前n項(xiàng)和為Sn(n∈N*),且 ﹣ = ,S6=63.
(1)求{an}的通項(xiàng)公式;
(2)若對(duì)任意的n∈N* , bn是log2an和log2an+1的等差中項(xiàng),求數(shù)列{(﹣1)n bn2}的前2n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com