【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習慣.由此催生了一批外賣點餐平臺,已知某外賣平臺的送餐費用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取80名點外賣的用戶進行統(tǒng)計,按送餐距離分類統(tǒng)計結(jié)果如下表:
以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)從這80名點外賣的用戶中任取一名用戶.求該用戶的送餐距離不超過3千米的概率;
(2)試估計利用該平臺點外賣用戶的平均送餐距離;
(3)若該外賣平臺給送餐員的送餐贄用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元;超過4千米為遠距離,每份9元,若送餐員一天的目標收 人不低于150元,試估計一天至少要送多少份外賣?
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐,平面,,,且,,.
(1)取中點,求證:平面;
(2)求直線與所成角的余弦值.
(3)在線段上,是否存在一點,使得二面角的大小為,如果存在,求與平面所成角,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)根據(jù)線性回歸方程預(yù)測2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,.(參考數(shù)據(jù): ,計算結(jié)果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據(jù)的中位數(shù);
(2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建極坐標系,直線的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,且.
(Ⅰ)求,的值;
(Ⅱ)是否存在實數(shù),,使得,對任意正整數(shù)恒成立?若存在,求出實數(shù)、的值并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個內(nèi)接四邊形為綠地,使其四個頂點分別落在矩形的四條邊上,已知且設(shè),綠地面積為.
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域.
(2)當為何值時,綠地面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com