A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個. |
分析 ①AC⊥BE,可由線面垂直證兩線垂直;
②EF∥平面ABCD,可由線面平行的定義請線面平行;
③三棱錐A-BEF的體積為定值,可證明棱錐的高與底面積都是定值得出體積為定值,根據(jù)等積法可得答案;
④異面直線AE、BF所成的角為定值,可由兩個極好位置說明兩異面直線所成的角不是定值
解答 解:①AC⊥BE,由題意及圖形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命題正確;
②EF∥平面ABCD,由正方體ABCD-A1B1C1D1的兩個底面平行,EF在其一面上,故EF與平面ABCD無公共點,故有EF∥平面ABCD,此命題正確;
③三棱錐A-BEF的體積為定值,由幾何體的性質及圖形知,三角形BEF的面積是定值,A點到面DD1B1B距離是定值,故可得三棱錐A-BEF的體積為定值,
又由△AEF的面積為定值,可得點B到平面AEF的距離為定值,此命題正確;
④異面直線AE、BF所成的角為定值,由圖知,當F與B1重合時,令上底面頂點為O,則此時兩異面直線所成的角是∠A1AO,當E與D1重合時,此時點F與O重合,則兩異面直線所成的角是OBC1,此二角不相等,故異面直線AE、BF所成的角不為定值.
綜上知①②③正確
故選:B.
點評 本題考查棱柱的結構特征,解答本題關鍵是正確理解正方體的幾何性質,且能根據(jù)這些幾何特征,對其中的點線面和位置關系作出正確判斷.熟練掌握線面平行的判斷方法,異面直線所成角的定義以及線面垂直的證明是解答本題的知識保證.
科目:高中數(shù)學 來源: 題型:解答題
意向 | 男 | 女 | 合計 |
生 | 40 | 20 | 60 |
不生 | 20 | 20 | 40 |
合計 | 60 | 40 | 100 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n-1 | B. | 2n | C. | 2n+1 | D. | 2n+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
X | 1 | 2 | 3 |
P | 0.5 | x | y |
A. | $\frac{7}{32}$ | B. | $\frac{9}{32}$ | C. | $\frac{33}{64}$ | D. | $\frac{55}{64}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,2) | B. | [-1,2) | C. | (-∞,-1] | D. | {-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com