(本小題滿分12分)在直三棱柱(側(cè)棱垂直底面)中,,,且異面直線與所成的角等于.
(Ⅰ)求棱柱的高;
(Ⅱ)求與平面所成的角的大。
(1)1(2)
解析試題分析:解:解:(Ⅰ)由三棱柱是直三棱柱可知,即為其高.
如圖,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/0d/3/1vk0a4.png" style="vertical-align:middle;" />∥,所以是異面直線與所成的角或其補(bǔ)角.
連接,因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/aa/7/12wym3.png" style="vertical-align:middle;" />,所以.
在Rt△中,由,,可得.…………… 3分
又異面直線與所成的角為,所以,即△為正三角形.
于是.
在Rt△中,由,得,即棱柱的高為.……6分
(Ⅱ)連結(jié),設(shè),由(Ⅰ)知,,
所以矩形是正方形,所以.
又由得 ,于是得平面.
故就是與平面所成的角. ………………………… 9分
在Rt△中,由,,
可得.
在Rt△中,由,,
得,故.
因此與平面所成的角. ………………………………………… 12分
考點(diǎn):本試題考查了棱柱中距離和角的求解。
點(diǎn)評:對于幾何體中的高的求解,可以借助于勾股定理來得到,同時(shí)對于線面角的求解,一般分為三步驟:先作,二證,三解。這也是所有求角的一般步驟,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點(diǎn).
(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點(diǎn)E到平面A1DB的距離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點(diǎn)B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)證明:SC⊥EF;
(II)若求三棱錐S—AEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側(cè)面BCC1B1丄底面ABC.
(I)若M、N分別是AB,A1C的中點(diǎn),求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長均為2,側(cè)棱BB1與底面 ABC所成的角為60°.問在線段A1C1上是否存在一點(diǎn)P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說明 理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在組合體中,ABCD—A1B1C1D1是一個(gè)長方體,P—ABCD是一個(gè)四棱錐.AB=2,BC=3,點(diǎn)P平面CC1D1D,且PC=PD=.
(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當(dāng)a為何值時(shí),PC//平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).
(1)求證:PB⊥DM;
(2)求CD與平面ADMN所成角的正弦值;
(3)在棱PD上是否存在點(diǎn)E,PE∶ED=λ,使得二面角C-AN-E的平面角為60o.存在求出λ值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在平行四邊形中,,將它們沿對角線折起,折后的點(diǎn)變?yōu)?img src="http://thumb.1010pic.com/pic5/tikupic/cd/4/dqotb1.png" style="vertical-align:middle;" />,且.
(Ⅰ)求證:平面平面;
(Ⅱ)為線段上的一個(gè)動點(diǎn),當(dāng)線段的長為多少時(shí),與平面所成的角為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com