如圖所示,ABCD-A1B1C1D1是長方體,AA1=a,∠BAB1=∠B1A1C1=30°,則AB與A1C1所成的角為________,AA1與B1C所成的角為________.
30° 45°
∵A1B1∥AB,∴∠C1A1B1是AB與A1C1所成的角是30°,
∵AA1∥BB1,
∴∠BB1C是AA1與B1C所成的角,
由已知條件可以得出
BB1=a,AB1=A1C1=2a,AB=a,
∴B1C1=BC=a.
∴四邊形BB1C1C是正方形,
∴∠BB1C=45°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在空間四邊形ABCD中,E,F(xiàn)分別是AB,AD的中點,G,H分別是BC,CD上的點,且=2.求證:直線EG,F(xiàn)H,AC相交于一點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方體中,,,,,分別是棱,,
,的中點.求證:
(1)直線∥平面;
(2)直線⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB=
2
2
AB.
(Ⅰ)證明:BC1平面A1CD
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)α、β、γ為彼此不重合的三個平面,l為直線,給出下列命題:
①若α∥β,α⊥γ,則β⊥γ;
②若α⊥γ,β⊥γ,且α∩β=l,則l⊥γ;
③若直線l與平面α內(nèi)的無數(shù)條直線垂直,則直線l與平面α垂直;
④若α內(nèi)存在不共線的三點到β的距離相等,則平面α平行于平面β;
上面命題中,真命題的序號為________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間四邊形ABCD中,E、F分別為AB、AD上的點,且AE∶EB=AF∶FD=1∶4,又H、G分別為BC、CD的中點,則(  )
A.BD∥平面EFG,且四邊形EFGH是平行四邊形
B.EF∥平面BCD,且四邊形EFGH是梯形
C.HG∥平面ABD,且四邊形EFGH是平行四邊形
D.EH∥平面ADC,且四邊形EFGH是梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)b,c表示兩條直線,α,β表示兩個平面,則下列命題正確的是(  )
A.若b?α,c∥α,則c∥b
B.若b?α,b∥c,則c∥α
C.若c?α,α⊥β,則c⊥β
D.若c?α,c⊥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在過正方體AC1的8個頂點中的3個頂點的平面中,能與三條棱CD 、A1D1、 BB1所成的角均相等的平面共有( 。
A.1 個       B.4 個        C.8 個         D.12個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直二面角α-l-β,點A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=2,AC=BD=1,則D到平面ABC的距離等于(   )
A.B.C.D.1

查看答案和解析>>

同步練習(xí)冊答案