【題目】下面是一段演繹推理:
大前提:如果直線平行于平面,則這條直線平行于平面內(nèi)的所有直線;
小前提:已知直線b∥平面α,直線a平面α;
結(jié)論:所以直線b∥直線a.在這個(gè)推理中( )
A. 大前提正確,結(jié)論錯(cuò)誤 B. 大前提錯(cuò)誤,結(jié)論錯(cuò)誤
C. 大、小前提正確,只有結(jié)論錯(cuò)誤 D. 小前提與結(jié)論都是錯(cuò)誤的
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
①函數(shù)關(guān)系是一種確定性關(guān)系;
②相關(guān)關(guān)系是一種非確定性關(guān)系;
③回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種方法;
④回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于“斜二測(cè)”直觀圖的畫法,下列說法中正確的是( )
A. 等腰三角形的直觀圖仍為等腰三角形; B. 圓的直觀圖仍為圓;
C. 正方形的直觀圖為平行四邊形; D. 梯形的直觀圖不是梯形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,,E,F分別為的中點(diǎn),將沿折起,使得.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知推理:“因?yàn)樗械慕饘俣寄軌驅(qū)щ,而銅能導(dǎo)電,所以銅是金屬”.則下列結(jié)論正確的是( )
A. 此推理大前提錯(cuò)誤 B. 此推理小前提錯(cuò)誤
C. 此推理的推理形式錯(cuò)誤 D. 此推理無錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域?yàn)?/span>,求實(shí)數(shù)的取值范圍;
⑵當(dāng)時(shí),求函數(shù)的最小值;
⑶是否存在非負(fù)實(shí)數(shù)、,使得函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,若存在,求出、的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)a=2時(shí),判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,,為中點(diǎn),底面是直角梯形,,,,.
(1)求證:平面;
(2)求證:平面平面;
(3)設(shè)為棱上一點(diǎn),,試確定的值使得二面角為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com