17.設(shè)A、B是拋物線y2=2px(p>0)上的兩點(diǎn),滿足OA⊥OB(O為坐標(biāo)原點(diǎn)).求證:?
(1)A、B兩點(diǎn)的橫坐標(biāo)之積為4p2;?
(2)直線AB經(jīng)過一個(gè)定點(diǎn).?

分析 (1)設(shè)A(x1,y1)、B(x2,y2),代入拋物線方程,通過OA⊥OB,推出y1y2=-4p2,從而證明結(jié)果.
(2)利用平方差法求出直線的斜率,求出直線方程利用直線系,判斷直線AB經(jīng)過定點(diǎn).

解答 證明:(1)設(shè)A(x1,y1)、B(x2,y2),則?y12=2px1、y22=2px2
∵OA⊥OB,?∴x1x2+y1y2=0,?y12y22=4p2x1x2=4p2•(-y1y2).
∴y1y2=-4p2,從而x1x2=4p2也為定值.?
(2)∵y12-y22=2p(x1-x2),?∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{2p}{{y}_{1}+{y}_{2}}$.
∴直線AB的方程為y-y1=$\frac{2p}{{y}_{1}+{y}_{2}}$(x-x1),
即y=$\frac{2p}{{y}_{1}+{y}_{2}}$x-$\frac{2p}{{y}_{1}+{y}_{2}}$•$\frac{{{y}_{1}}^{2}}{2p}$+y1,
y=$\frac{2p}{{y}_{1}+{y}_{2}}$x+$\frac{{y}_{1}{y}_{2}}{{y}_{1}+{y}_{2}}$,
亦即y=$\frac{2p}{{y}_{1}+{y}_{2}}$(x-2p).
∴直線AB經(jīng)過定點(diǎn)(2p,0).

點(diǎn)評(píng) 本題考查直線與拋物線位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力,平方差法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象在y軸上截距為0,它在y軸右側(cè)的第一個(gè)最大值點(diǎn)和最小值點(diǎn)分別為(x0,$\frac{{-1+\sqrt{2}}}{2}$);(x0+π,$\frac{{-1-\sqrt{2}}}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若函數(shù)g(x)=f(x)+m|x+$\frac{3π}{4}}$|(m>0)在[-$\frac{11π}{12}$,-$\frac{π}{2}$]上存在零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.f(x)對(duì)任意x∈R都有f(x)+f(1-x)=$\frac{1}{2}$.?dāng)?shù)列{an}滿足:an=f(0)+f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$)+f(1),則an=$\frac{n+1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{3}$x3+ax2+ax在(-∞,+∞)單調(diào)遞增的充要條件是(  )
A.0<a<1B.0≤a≤1C.a<0或a>1D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)y=2|x|-x-2的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓x2+y2-x+my+4=0在y軸上截得的線段長為4,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是$\frac{8π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知集合A={x|a-2<x<2a},B={x|x≥2,x∈Z},D={x|x<0,或x≥3}.
(1)當(dāng)a=2時(shí),求:A∩B,(∁RA)∩D,A∪(∁RD);
(2)若A∪D=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則an=2n;記Tn=a1+3a2+…+(2n-1)an,則Tn=6+(2n-3)2n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案