對任意正整數(shù)n,定義n的雙階乘n!!如下:
當n為偶數(shù)時,n!!=n(n-2)(n-4)…6•4•2
當n為奇數(shù)時,n!!=n(n-2)(n-4)…5•3•1′
現(xiàn)有四個命題:
①(2007!!)(2006!!)=2007!,
②2006!!=2•1003!,
③2006!!個位數(shù)為0,
④2007!!個位數(shù)為5
其中正確的個數(shù)為( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應用
專題:推理和證明
分析:根據(jù)已知中n的雙階乘n!!的定義,逐一分析四個結論的真假,可得答案.
解答: 解:∵2006!!=2006•2004•2002…6•4•2,
20007!!=2007•2005•2003…5•3•1,
∴①(2007!!)(2006!!)=2007•2006•2005…2•2•1=2007!,故正確;
②2006!!=21003•1003!,故錯誤;
③2006!!中包含因數(shù)10,故積個位數(shù)為0,故正確;
④2007!!包含因數(shù)5,且因數(shù)均為奇數(shù),故積的個位數(shù)為5,故正確;
故①,③,④正確;②錯誤,
故選:C
點評:本題考查了信息處理和應用能力.難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

復數(shù)5i(2+i)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
1
2
,橢圓C的右焦點關于直線y=x+1的對稱點的縱坐標為2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線AB交橢圓C于A,B兩點,若以AB為直徑的圓過原點,求證:
1
|OA|2
+
1
|OB|2
為定值,并求出這個值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知15+
13
與15-
13
的小數(shù)部分分別是a,b,求ab-3a+4b-5的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①已知
.
e
是單位向量|
.
a
+
.
e
|=|
.
a
-2
.
e
|,則
a
e
方向上的投影為
1
2

②函數(shù)f(x)=
x-1
2x+1
的對稱中心是(-
1
2
,-
1
2
)
;
③將函數(shù)y=sin(2x+
π
3
)圖象向右平移
π
3
個單位,得到函數(shù)y=2sin2x的圖象;
④在△ABC中,若A<B,則sinA<sinB;
其中正確的命題序號是
 
(填出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式:
(1)(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+(1.5)-2
(2)log3
427
3
+lg25+lg4+7log72
(3)求函數(shù)y=log2(x2-2x+3)的值域,并寫出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且a>c,已知
BA
BC
=-2,cosB=-
2
3
,b=
14

(1)求a和c的值;
(2)cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AE⊥平面ABC,平面ABC⊥平面BCD,點M在BC上,
(1)若AM⊥BD,求證AM⊥BC;
(2)若點M是BC中點,且AB=AC=AE=CD=BD=3,BC=3
2
,求四棱錐B-AMDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin α=
2
3
,α∈(
π
2
,π)
,cosβ=-
3
4
,β∈(π,
2
)
 求:
(1)cos(α-β)的值;
(2)sin(2α-
π
4
);
(3)tan(β+
π
3
).

查看答案和解析>>

同步練習冊答案