12.已知集合A={x|-1<x≤3},B={-2,-1,0,3,4},則A∩B=( 。
A.{0}B.{0,3}C.{-1,0,3}D.{0,3,4}

分析 根據(jù)集合的交集的運算求出即可.

解答 解:∵A={x|-1<x≤3},B={-2,-1,0,3,4},
∴A∩B={0,3},
故選:B.

點評 本題考查集合的基本運算,考查計算能力,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若數(shù)列{an}滿足a1=1,且對于任意的n∈N*都有an+1=an+n+1,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2006}}}}$等于( 。
A.$\frac{4030}{2016}$B.$\frac{2015}{2016}$C.$\frac{4032}{2017}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,bn=$\frac{1}{\sqrt{n}}$-$\sqrt{\frac{{a}_{n+1}}{n}}$,記Sn=b1+b2+…+bn,則S100=$1-\frac{1}{\sqrt{101}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)y=f(x)在[a,b]上可導(dǎo)且單調(diào)遞增,則函數(shù)g(x)=$\frac{f(x)-f(a)}{x-a}$在(a,b)上的單調(diào)性為( 。
A.單調(diào)遞增B.單調(diào)遞減C.不增不減D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若sin($\frac{π}{6}$-α)=$\frac{1}{3}$,則2cos2($\frac{π}{6}$+$\frac{α}{2}$)-1=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{7}{9}$D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知a=ccosB+3asin(A+B).
(1)若$\frac{a}$=$\sqrt{3}$,求角C;
(2)在(1)的條件下,若△ABC的面積為$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的圖象如圖所示,則函數(shù)y=f(x)+ω的對稱中心坐標(biāo)為( 。
A.($\frac{2}{3}$kπ+$\frac{π}{24}$,$\frac{3}{2}$)(k∈Z)B.(3kπ-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)C.($\frac{1}{2}$kπ+$\frac{5π}{8}$,$\frac{3}{2}$)(k∈Z)D.($\frac{3}{2}kπ$-$\frac{3π}{8}$,$\frac{2}{3}$)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60°.點E和F分別在線段BC和DC上,且$\overline{BE}=\frac{2}{3}\overline{BC},\overline{DF}=\frac{1}{6}\overline{DC}$,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的值為( 。
A.$\frac{5}{3}$B.$\frac{14}{9}$C.$\frac{29}{18}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,若b=2,a=3,$cosC=-\frac{1}{4}$,則c=(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案