15.如圖葉莖圖記錄了甲、乙兩組各6名學(xué)生在一次數(shù)字測試中的成績(單位:分),已知甲組數(shù)據(jù)的眾數(shù)為84,乙組數(shù)據(jù)的平均數(shù)即為甲組數(shù)據(jù)的中位數(shù),則x,y的值分別為( 。
A.4,5B.5,4C.4,4D.5,5

分析 由莖葉圖中甲組的數(shù)據(jù),根據(jù)它們的眾數(shù),求出x的值,得出甲組數(shù)據(jù)的中位數(shù),再求乙組數(shù)據(jù)的平均數(shù),即得y的值.

解答 解:根據(jù)莖葉圖的數(shù)據(jù)知,甲組數(shù)據(jù)是
72,79,84,(80+x),94,97,
它們的眾數(shù)是84,∴x=4;
∴甲組數(shù)據(jù)的中位數(shù)是84,
∴乙組數(shù)據(jù)的平均數(shù)為84
即$\frac{1}{6}$×(76+76+85+80+y+88+94)=84,
解得y=5;
∴x、y的值分別為4、5.
故選:A.

點(diǎn)評 本題考查了莖葉圖的應(yīng)用問題,解題時(shí)應(yīng)根據(jù)莖葉圖的數(shù)據(jù),求出它們的平均數(shù)與中位數(shù),從而求出x、y的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過拋物線y2=4ax(a>0)的焦點(diǎn)F作斜率為-1的直線l,l與離心率為e的雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>0})$的兩條漸近線的交點(diǎn)分別為B,C.若xB,xC,xF分別表示B,C,F(xiàn)的橫坐標(biāo),且$x_F^2=-{x_B}•{x_C}$,則e=( 。
A.6B.$\sqrt{6}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在長方體ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分別是AA1和BB1的中點(diǎn),G是DB上的點(diǎn),且DG=2GB.
(I)作出長方體ABCD-A1B1C1D1被平面EB1C所截的截面(只需作出,說明結(jié)果即可);
(II)求證:GF∥平面EB1C;
(III)設(shè)長方體ABCD-A1B1C1D1被平面EB1C所截得的兩部分幾何體體積分別為V1、V2(V1>V2),求$\frac{{V}_{2}}{{V}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知x∈R,用[x]表示不超過x的最大整數(shù),記{x}=x-[x],若a∈(0,1),且$\{a\}>\{a+\frac{1}{3}\}$,則實(shí)數(shù)a的取值范圍是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=ex+2(x<0)與g(x)=ln(x+a)+2的圖象上存在關(guān)于y軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,e)B.(0,e)C.(e,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知:m,n∈N*,函數(shù)f(x)=(1-x)m+(1-x)n
(1)當(dāng)m=n+1時(shí),f(x)展開式中x2的系數(shù)是25,求n的值;
(2)當(dāng)m=n=7時(shí),f(x)=a7x7+a6x6+…+a1x+a0
(i)求a0+a2+a4+a6
(ii)$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{7}}{{2}^{7}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=x2+ln|x|的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知三條不同的直線a,b,c,若a⊥b,則“a⊥c”是“b∥c”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線$y=kx+\sqrt{2}$與圓x2+y2=1沒有公共點(diǎn),則此直線傾斜角α的取值范圍是[0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π).

查看答案和解析>>

同步練習(xí)冊答案