A. | $\frac{8}{9}$ | B. | -$\frac{6}{7}$ | C. | $\frac{21}{16}$ | D. | $\frac{22}{31}$ |
分析 利用基本不等式的性質(zhì)可得n=9,再利用二項(xiàng)式定理的通項(xiàng)公式即可得出.
解答 解:$\frac{1}{a}+\frac{1}=\frac{a+4b}{a}+\frac{a+4b}=5+\frac{4b}{a}+\frac{a}≥5+2\sqrt{\frac{4b}{a}•\frac{a}}=9$,當(dāng)且僅當(dāng)a=4b時(shí),取等號(hào),
${(x-\frac{1}{{2\sqrt{x}}})^n}={(x-\frac{1}{{2\sqrt{x}}})^9}$的展開(kāi)式的通項(xiàng)為${T_{r+1}}=C_9^r{x^{9-r}}{(-\frac{1}{{2\sqrt{x}}})^r}=C_9^r{(-\frac{1}{2})^r}{x^{9-\frac{3}{2}r}}(r=0,1,2,…,9)$,
令$9-\frac{3}{2}r=0,r=6$,
∴常數(shù)項(xiàng)為$C_9^6{(-\frac{1}{2})^6}=\frac{21}{16}$,
故選:C.
點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、二項(xiàng)式定理的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | -3 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $\frac{25}{16}$ | C. | -$\frac{7}{16}$ | D. | -$\frac{25}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 5 | C. | 10 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n≥16? | B. | n≥32? | C. | n≥8? | D. | n<32? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com