【題目】已知函數(shù) 有兩個不同的零點.
(1)求的取值范圍;
(2)設(shè), 是的兩個零點,證明: .
【答案】(1) (2)見解析
【解析】試題分析:(1)求出,分四種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間, 求得的范圍,可得函數(shù)的減區(qū)間,根據(jù)單調(diào)性,結(jié)合函數(shù)草圖可篩選出符合題意的的取值范圍;(2)構(gòu)造函數(shù)設(shè), ,可利用導(dǎo)數(shù)證明∴,∴,
于是,即, 在上單調(diào)遞減,可得,進(jìn)而可得結(jié)果.
試題解析:(1)【解法一】
函數(shù)的定義域為: .
,
①當(dāng)時,易得,則在上單調(diào)遞增,
則至多只有一個零點,不符合題意,舍去.
②當(dāng)時,令得: ,則
+ | 0 | - | |
增 | 極大 | 減 |
∴ .
設(shè),∵,則在上單調(diào)遞增.
又∵,∴時, ; 時, .
因此:
(i)當(dāng)時, ,則無零點,
不符合題意,舍去.
(ii)當(dāng)時, ,
∵ ,∴在區(qū)間上有一個零點,
∵ ,
設(shè), ,∵,
∴在上單調(diào)遞減,則,
∴,
∴在區(qū)間上有一個零點,那么, 恰有兩個零點.
綜上所述,當(dāng)有兩個不同零點時, 的取值范圍是.
(1)【解法二】
函數(shù)的定義域為: . ,
①當(dāng)時,易得,則在上單調(diào)遞增,
則至多只有一個零點,不符合題意,舍去.
②當(dāng)時,令得: ,則
+ | 0 | - | |
增 | 極大 | 減 |
∴ .
∴要使函數(shù)有兩個零點,則必有,即,
設(shè),∵,則在上單調(diào)遞增,
又∵,∴;
當(dāng)時:
∵ ,
∴在區(qū)間上有一個零點;
設(shè),
∵,∴在上單調(diào)遞增,在上單調(diào)遞減,
∴,∴,
∴ ,
則,∴在區(qū)間上有一個零點,
那么,此時恰有兩個零點.
綜上所述,當(dāng)有兩個不同零點時, 的取值范圍是.
(2)【證法一】
由(1)可知,∵有兩個不同零點,∴,且當(dāng)時, 是增函數(shù);
當(dāng)時, 是減函數(shù);
不妨設(shè): ,則: ;
設(shè), ,
則:
.
當(dāng)時, ,∴單調(diào)遞增,又∵,
∴,∴,
∵,∴,
∵,∴,
∵, , 在上單調(diào)遞減,
∴,∴.
(2)【證法二】
由(1)可知,∵有兩個不同零點,∴,且當(dāng)時, 是增函數(shù);
當(dāng)時, 是減函數(shù);
不妨設(shè): ,則: ;
設(shè), ,
則
.
當(dāng)時, ,∴單調(diào)遞增,
又∵,∴,∴,
∵,
∴ ,
∵, , 在上單調(diào)遞減,
∴,∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取次.記錄如下:
甲: , , , , , , ,
乙: , , , , , , ,
()用莖葉圖表示這兩組數(shù)據(jù).
()現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為派哪位學(xué)生參加合適?請說明理由.
()若將頻率視為概率,對甲同學(xué)在今后的三次數(shù)學(xué)競賽成績進(jìn)行預(yù)測,記這次成績中高于分的次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓:,動圓與圓外切并且與圓內(nèi)切,圓心軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上關(guān)于軸對稱的兩點,點,直線交曲線
于另一點,求證:直線過定點,并求該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小李在做一份調(diào)查問卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.
(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;
(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)數(shù)列{cn}滿足,數(shù)列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正△ABC的邊長為2, CD是AB邊上的高,E、F分別是AC和BC的中點(如圖(1)).現(xiàn)將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線段BC上是否存在一點P,使AP⊥DE?證明你的結(jié)論;
(3)求二面角E-DF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進(jìn)行文科、理科數(shù)學(xué)成績對比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績進(jìn)行統(tǒng)計,其頻率分布表如下.
(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求理科數(shù)學(xué)成績的中位數(shù)的估計值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績與文理科有關(guān):
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com