【題目】某校進(jìn)行文科、理科數(shù)學(xué)成績(jī)對(duì)比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布表如下.
(Ⅰ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表,求理科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;(精確到0.01)
(Ⅱ)請(qǐng)?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān):
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(Ⅰ)108.65分(Ⅱ) 沒有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān)
【解析】 試題分析:(Ⅰ)中位數(shù)兩邊的概率值相等均為0.5,由此可得解;
(Ⅱ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表可完成列聯(lián)表,根據(jù)題中公式計(jì)算,查表下結(jié)論即可.
試題解析:
(Ⅰ)文科數(shù)學(xué)成績(jī)的頻率分布表中,成績(jī)小于105分的頻率為0.41<0.5,
成績(jī)小于120分的頻率為0.78>0.5,
故文科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值為分.
(Ⅱ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表得如下列聯(lián)表:
數(shù)學(xué)成績(jī)分 | 數(shù)學(xué)成績(jī)分 | 合計(jì) | |
理科 | 25 | 75 | 100 |
文科 | 22 | 78 | 100 |
合計(jì) | 47 | 153 | 200 |
,
故沒有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 有兩個(gè)不同的零點(diǎn).
(1)求的取值范圍;
(2)設(shè), 是的兩個(gè)零點(diǎn),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;
②若銳角、滿足c,則;
③若,則對(duì)恒成立;
④要得到的圖像,只需將的圖像向右平移個(gè)單位:
其中真命題的個(gè)數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為.(注:利潤(rùn)與投資金額單位:萬元)
(1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫出定義域;
(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬元?
【答案】(1);(2)20,28.
【解析】
(1)設(shè)投入產(chǎn)品萬元,則投入產(chǎn)品萬元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤(rùn)的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤(rùn)總和的表達(dá)式.(2)利用基本不等式求得利潤(rùn)的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.
(1)其中萬元資金投入產(chǎn)品,則剩余的(萬元)資金投入產(chǎn)品,
利潤(rùn)總和為: ,
(2)因?yàn)?/span>,
所以由基本不等式得:,
當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤(rùn)28萬.
此時(shí)投入A產(chǎn)品20萬元,B產(chǎn)品80萬元.
【點(diǎn)睛】
本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問題,考查利用基本不等式求最大值,屬于中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知曲線.
(1)求曲線在處的切線方程;
(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)50名學(xué)生參加數(shù)學(xué)競(jìng)賽,根據(jù)他們的成績(jī)繪制了如圖所示的頻率分布直方圖,已知分?jǐn)?shù)在的矩形面積為,
求:分?jǐn)?shù)在的學(xué)生人數(shù);
這50名學(xué)生成績(jī)的中位數(shù)精確到;
若分?jǐn)?shù)高于60分就能進(jìn)入復(fù)賽,從不能進(jìn)入復(fù)賽的學(xué)生中隨機(jī)抽取兩名,求兩人來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了改善居民的休閑娛樂活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、和,要求點(diǎn)是的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.
(1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面為菱形,且, 是中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)若, ,求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,且滿足 , , .
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為,若對(duì)一切正整數(shù)都成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),和直線m:,且.
求a的值;
是否存在k的值,使直線m既是曲線的切線,又是曲線的切線?如果存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com