8.如果b是a,c的等差中項,y是x,z的等比中項,且x,y,z都是正數(shù),則(b-c)logmx+(c-a)logmy+(a-b)logmz=0.

分析 由等差數(shù)列,可設(shè)公差為d,則a=b-d,c=b+d,y是x,z的等比中項,可得xz=y2,運用對數(shù)的運算性質(zhì),計算即可得到所求值.

解答 解:b是a,c的等差中項,
可設(shè)公差為d,則a=b-d,c=b+d,
y是x,z的等比中項,可得xz=y2,
則(b-c)logmx+(c-a)logmy+(a-b)logmz
=-dlogmx+2dlogmy+(-d)logmz
=-d(logmx+logmz)+dlogmy2=-dlogmxz+dlogmy2
=-dlogm$\frac{xz}{{y}^{2}}$=-dlogm1=0.
故答案為:0.

點評 本題考查等差數(shù)列和等比數(shù)列中項的性質(zhì),考查對數(shù)的運算性質(zhì),化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.秦九昭是我國南宋時期的數(shù)學(xué)家,他在所著的《數(shù)學(xué)九章》中提出的多項式求值的秦九昭算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九昭算法求某多項式值的一個實例,若輸入n,x的值分別為3,4,則輸出y的值為( 。
A.6B.25C.100D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

在直角坐標系中,以原點為極點,以軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為

(1)求曲線的直角坐標方程并指出其形狀;

(2)設(shè)是曲線上的動點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)函數(shù),若,則實數(shù)等于( )

A. B. C.2 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,PA=AD=1,AB=$\sqrt{3}$,點E為PD的中點,點F在棱DC上移動.
(1)當(dāng)點F為DC的中點時,求證:EF∥平面PAC
(2)求證:無論點F在DC的何處,都有PF⊥AE
(3)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求函數(shù)y=9-x2的導(dǎo)數(shù)(導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4$\sqrt{5}$.
(Ⅰ)設(shè)M是線段PC上的一點,證明:平面BDM⊥平面PAD
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在如圖所示的幾何體中,A1B1C1-ABC是直三棱柱,四邊形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中點.
(Ⅰ)求證:AE∥平面BB1D;
(Ⅱ)當(dāng)A1A為何值時,平面B1C1D與平面ABDC所成二面角的大小等于45°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若點P(a,b)是直線$y=\sqrt{3}x-\sqrt{3}$上的點,則(a+1)2+b2的最小值是(  )
A.3B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.0

查看答案和解析>>

同步練習(xí)冊答案