9.若直線x-y=0與直線2x+ay-1=0平行,則實(shí)數(shù)a的值為-2.

分析 根據(jù)兩條直線平行,斜率相等,即可得出結(jié)論.

解答 解:∵直線x-y=0與直線2x+ay-1=0平行,
∴1=-$\frac{2}{a}$,
∴a=-2,顯然兩條直線不重合.
故答案為-2.

點(diǎn)評(píng) 本題考查直線的一般式方程和平行關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.?dāng)?shù)列{an},an≠0,若a1=3,2an+1-an=0,則a5=( 。
A.$\frac{3}{32}$B.$\frac{3}{16}$C.48D.94

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)向量$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AC}$=( 。
A.$\overrightarrow{a}$+$\overrightarrow$B.$\overrightarrow{a}$-$\overrightarrow$C.-$\overrightarrow{a}$-$\overrightarrow$D.-$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2-3n+3,則數(shù)列{an}的通項(xiàng)公式為an=$\left\{\begin{array}{l}{1,n=1}\\{2n-4,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,己知正方形ABCD的邊長(zhǎng)為l,點(diǎn)E是AB邊上的動(dòng)點(diǎn).
(1)$\overrightarrow{DE}$•$\overrightarrow{CB}$的值,
(2)求$\overrightarrow{DE}$•$\overrightarrow{DC}$ 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等比數(shù)列{an}的公比為q(0<q<1),且a2+a5=$\frac{9}{8}$,a3a4=$\frac{1}{8}$.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若bn=an•(log2an),求bn的前n項(xiàng)和Tn;
(III)設(shè)該等比數(shù)列{an}的前n項(xiàng)和為Sn,正整數(shù)m,n滿足$\frac{{S}_{n}-m}{{S}_{n+1}-m}$<$\frac{1}{2}$,求出所有符合條件的m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知△ABC中,b=10,A=75°,C=60°,則c=( 。
A.$5\sqrt{2}$B.$5\sqrt{6}$C.$5\sqrt{3}$D.$10\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:?x>0,x+$\frac{1}{x}$≥2命題q:若a>b,則ac>bc.下列命題為真命題的是(  )
A.qB.¬pC.p∨qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M、N分別為線段A1B、AC1的中點(diǎn).
(1)求證:MN∥平面BB1C1C;
(2)若D在邊BC上,AD⊥DC1,求證:MN⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案