19.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12千克.求該公司從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,可獲得的最大利潤.

分析 根據(jù)題設(shè)中的條件可設(shè)每天生產(chǎn)甲種產(chǎn)品x桶,乙種產(chǎn)品y桶,根據(jù)題設(shè)條件得出線性約束條件以及目標(biāo)函數(shù)求出利潤的最大值即可.

解答 解:設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為x桶,y桶,利潤為z元
則根據(jù)題意可得$\left\{\begin{array}{l}{x+2y≤12}\\{2x+y≤12}\\{x,y≥0且x,y∈N}\end{array}\right.$,
目標(biāo)函數(shù)z=300x+400y
作出不等式組表示的平面區(qū)域,如圖所示
作直線L:3x+4y=0,然后把直線向可行域平移,
由圖象知當(dāng)直線經(jīng)過A時,目標(biāo)函數(shù)z=300x+400y的截距最大,此時z最大,
由$\left\{\begin{array}{l}{x+2y=12}\\{2x+y=12}\end{array}\right.$可得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即A(4,4),
此時z最大z=300×4+400×4=2800,
即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為2800.

點評 本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識進行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,0<φ<π)為偶函數(shù),點P,Q分別為函數(shù)y=f(x)圖象上相鄰的最高點和最低點,且|$\overrightarrow{PQ}$|=$\sqrt{2}$.求函數(shù)f(x)的解析式、周期、值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:填空題

命題:“”的否定是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=(x2+mx)ex(其中e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)m=-2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,3]上單調(diào)遞減,求m的取值范圍;
(Ⅲ)是否存在實數(shù)m,使得f(x)為R上的單調(diào)函數(shù)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{∁}_{R}Q}\end{array}\right.$被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,則關(guān)于函數(shù)f(x)有如下四個命題:
①函數(shù)f(x)是偶函數(shù);
②f(f(x))=0;
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④不存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),
使得△ABC 為等邊三角形.其中為真命題的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).
(1)求曲線f(x)在點(1,f(1))處的切線;
(2)若方程f(x)-($\frac{1}{3}$x3+$\frac{1}{2}$x2+m)=0有3個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若用如圖的程序框圖求數(shù)列{$\frac{n+1}{n}$}的前100項和,則賦值框和判斷框中可分別填入( 。
A.S=S+$\frac{i+1}{i}$,i≥100?B.S=S+$\frac{i+1}{i}$,i≥101?C.S=S+$\frac{i}{i-1}$,i≥100?D.S=S+$\frac{i}{i-1}$,i≥101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)y=4cosx-1,x∈[0,$\frac{π}{2}$],此函數(shù)的最小值為-1;最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的單位向量,向量$\overrightarrow{c}$滿足$\overrightarrow{c}$=λ$\overrightarrow{a}$+(1-λ)$\overrightarrow$,λ∈R,且|$\overrightarrow{c}$|=$\frac{1}{2}$,則|$\overrightarrow{a}$-$\overrightarrow$|的最小值是$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案