5.已知e為自然對數(shù)的底數(shù),函數(shù)f(x)=$\left\{\begin{array}{l}{4x-4,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,則方程f(x)=ax恰有兩個不同的實數(shù)解時,實數(shù)a的取值范圍是( 。
A.(e,4]B.(4,+∞)C.(e,+∞)D.($\frac{1}{e}$,4)

分析 作出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合結(jié)合導數(shù)求出函數(shù)的切線斜率,即可得到結(jié)論.

解答 解作出函數(shù)f(x)的圖象如圖,
設(shè)y=kx與f(x)=ex,在x>0相切時,設(shè)切點為P(m,n),
則函數(shù)的導數(shù)f′(x)=ex
則在P(m,n)處的切線斜率k=f′(m)=em
則切線方程為y-n=em(x-m),
即y=emx+em-mem,
當x=0,y=0時,em-mem=0,
即1-m=0,m=1,此時切線斜率k=f′(m)=e,
∵e<4,
∴當a=e時,直線y=ex與f(x)只有一個交點,
當a>e時,在x>0上,f(x)與y=ax有兩個交點,
當a=4時,y=ax與y=4x-4,平時,此時f(x)與y=ax有兩個交點,
當a>4時,此時f(x)與y=ax有3個交點,
綜上若f(x)=ax恰有兩個不同的實數(shù)解時,
則e<a≤4,
故選:A

點評 本題主要考查函數(shù)與方程的應(yīng)用,作出函數(shù)f(x),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.將函數(shù)y=sinx的圖象向右至少平移$\frac{3π}{2}$個單位可得到函數(shù)y=cosx的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若(k$\overrightarrow{a}+\overrightarrow$)⊥(3$\overrightarrow{a}-\overrightarrow$),則實數(shù)k=( 。
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,則下列說法正確的( 。
A.?a∈(2,4),輸出的i的值為5B.?a∈(4,5),輸出的i的值為5
C.?a∈(3,4),輸出的i的值為5D.?a∈(2,4),輸出的i的值為5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知正項數(shù)列{an},a1=2,(an+1)an+2=1,a2=a6,則a11+a12=$\frac{1}{9}$+$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是AA1和CC1的中點,且BE⊥B1F.
(Ⅰ)求證B1F⊥平面BEC1
(Ⅱ)求三棱錐B1-BEC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在長方體ABCD-A1B1C1D1中,AB=3,BC=2,AA1=1,點M,N,P分別是棱AB,BC,CC1的中點,則三棱錐C1-MNP的體積為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖給出的是計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個程序框圖,則判斷框內(nèi)應(yīng)填入的條件是(  )
A.i≤1008?B.i>1008?C.i≤1009?D.i>1009?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

同步練習冊答案