9.角α的終邊上一點的坐標為$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,則sinα等于( 。
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 由條件利用任意角的三角函數(shù)的定義,求得sinα的值.

解答 解:∵角α的終邊上一點的坐標為$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,即為($\sqrt{3}$,-1),
∴x=$\sqrt{3}$,y=-1,r=|OP|=2,
∴sinα=$\frac{y}{r}$=-$\frac{1}{2}$,
故選:A.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.某車向正南方向開了S km后,向右轉(zhuǎn)30°角,然后又開了2km,結(jié)果該車離出發(fā)點恰好2$\sqrt{3}$km,則S=($\sqrt{11}$-$\sqrt{3}$)km.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知${C}_{n}^{0}$,${C}_{n}^{1}$,${C}_{n}^{2}$,…,${C}_{n}^{n}$中最大值的項只有${C}_{n}^{5}$,則${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$=( 。
A.25B.28C.29D.210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{16}=1$的漸近線方程為(  )
A.y=±2xB.y=±$\frac{1}{2}$xC.y=$±\sqrt{5}$xD.y=$±\frac{\sqrt{5}}{2}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\overrightarrow a=(-1,2)$,$\overrightarrow b=(2,3)$,$\overrightarrow m=λ\overrightarrow a+\overrightarrow b$,$\overrightarrow n=\overrightarrow a-\overrightarrow b$,若$\overrightarrow m$與$\overrightarrow n$垂直,則實數(shù)λ的值是9,若$\overrightarrow m$與$\overrightarrow n$的夾角為鈍角,則實數(shù)λ的取值范圍是λ<9且λ≠-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題“?x0∈R,$x_0^3-x_0^2+1>0$”的否定是(  )
A.?x∈R,$x_{\;}^3-x_{\;}^2+1≤0$B.?x0∈R,$x_0^3-x_0^2+1<0$
C.?x0∈R,$x_0^3-x_0^2+1≤0$D.?x∈R,$x_{\;}^3-x_{\;}^2+1>0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.中心在原點,焦點在y軸上,虛軸長為$4\sqrt{2}$并且離心率為3的雙曲線的漸近線方程為y=±$\frac{\sqrt{2}}{4}$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線的夾角為90°,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為F1(0,-c)(c>0),離心率為e,過F1平行于雙曲線漸近線的直線與圓x2+y2=c2交于另一點P,且點P在拋物線x2=4cy上,則e2=(  )
A.$\frac{\sqrt{5}+2}{2}$B.$\frac{\sqrt{5}+2}{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{5}+1}{3}$

查看答案和解析>>

同步練習冊答案