在△ABC中,角A,B,C所對的邊分別是a,b,c,已知bcosC+
3
bsinC=a+c.
(1)求∠B的大小;
(2)若b=
3
,求a+c的取值范圍.
考點(diǎn):正弦定理,余弦定理
專題:計(jì)算題,三角函數(shù)的求值,解三角形
分析:(1)運(yùn)用正弦定理,將邊化為角,再由兩角和差的正弦公式,化簡整理即可得到角B;
(2)運(yùn)用兩角和的正弦公式,結(jié)合C的范圍,由正弦函數(shù)的圖象和性質(zhì)即可得到范圍.
解答: 解:(1)由正弦定理,可得,
bcosC+
3
bsinC=a+c即為
sinBcosC+
3
sinBsinC=sinA+sinC
=sin(B+C)+sinC
=sinBcosC+cosBsinC+sinC,
即有
3
sinB-cosB=1,
即2(
3
2
sinB-
1
2
cosB)=1,
即有sin(B-
π
6
)=
1
2

由于0<B<π,則有B-
π
6
=
π
6

則B=
π
3
;
(2)A+C=π-B=
3
,
則0<C<
3
,
則a+c=bcosC+
3
bsinC=
3
cosC+3sinC
=2
3
1
2
cosC+
3
2
sinC)
=2
3
sin(C+
π
6
),
由于
π
6
<C+
π
6
6
,則
1
2
sin(C+
π
6
)≤1,
則a+c的取值范圍是(
3
,2
3
].
點(diǎn)評:本題考查正弦定理的運(yùn)用,考查三角函數(shù)的化簡和求值,考查兩角和差的正弦公式,正弦函數(shù)的圖形和性質(zhì),考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,且4a-b≥0,若函數(shù)f(x)=
1
3
ax3+x2+bx無極值,則
b-2
a+1
的取值范圍為( 。
A、[2
3
-4,4]
B、[2
3
-4,+∞]
C、[-2
3
-4,4]
D、[-2
3
-4,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的負(fù)半軸的拋物線截直線y=x+
3
2
所得的弦長|P1P2|=4
2
,求此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(x+1)(x2+ax+b)(a,b∈R)的圖象關(guān)于點(diǎn)(2,0)對稱,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點(diǎn)P0(-2,3),且傾斜角α=45°,求直線l的點(diǎn)斜式方程,并畫出直線l.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=sinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得圖象向左平移
π
4
個單位,所得函數(shù)為g(x).
(1)求函數(shù)g(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[
π
8
,
4
]
上的最小值和最大值,并求出取最值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校從高一各班隨機(jī)抽取了部分同學(xué)參加了一次安全知識競賽,其中某班參賽同學(xué)的成績(滿分為100分)的莖葉圖和頻率分布直方圖都受了不同程度的破壞,但可見部分,如圖所示,據(jù)此解答下列問題:

(1)求該班的參賽人數(shù)及分?jǐn)?shù)在[80,90)之間的人數(shù);
(2)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生的失分情況,在抽取的試卷中,設(shè)分?jǐn)?shù)在[90,100]之間的份數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x+θ)cos(x+
π
3
)為偶函數(shù),則θ的值可以為( 。
A、
π
6
B、
π
3
C、-
π
6
D、-
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
1
x2-1
+x2+λ>0對于x∈(-∞,-1)恒成立,則實(shí)數(shù)λ的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案