14.設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R),當(dāng)k∈(${\frac{1}{2}$,1)時(shí),求函數(shù)f(x)在[0,k]上的最大值M.

分析 求出函數(shù)的導(dǎo)數(shù),求出極值點(diǎn),判斷函數(shù)的單調(diào)性然后求解函數(shù)的最大值即可.

解答 解:f(x)=(x-1)ex-kx2
f′(x)=x(ex-2k)=0可得x1=0,x2=ln2k.∵k∈($\frac{1}{2}$,1],則2k∈(1,2].
∴l(xiāng)n2k∈(0,ln2]令x2>x1

∴在(0,ln2k)↓(ln2k,k)↑圖象
由圖象可知最大值在0處或k處取得,
∴f(k)-f(0)=(k-1)ek-k3+1=(k-1)ek-(k-1)(k2+k+1)=(k-1)(ek-k2-k-1)
令h(k)=ek-k2-k-1h′(k)=ek-2k-1h′′(k)=ek-2=0
∴k=ln2在($\frac{1}{2}$,1]上先減后增h′(1)=e-3<0,h′(${\frac{1}{2}}$)=$\sqrt{e}$-2<0
∴h′(k)max<0,即h(k)單調(diào)遞減∴h(k)max=h(${\frac{1}{2}}$)=$\sqrt{e}$-$\frac{1}{4}$-$\frac{3}{2}$=$\sqrt{e}$-$\frac{7}{4}$
又∵e-$\frac{49}{16}$<0∴f(k)-f(0)>0.
∴f(x)max=f(k)=(k-1)ek-k3=(k-1)ek-k3

點(diǎn)評(píng) 本題的精華點(diǎn)在于導(dǎo)函數(shù)與原函數(shù)的穿插運(yùn)用,注意圖象中導(dǎo)函數(shù)與原函數(shù)的圖象的應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等差數(shù)列{an}的前n項(xiàng)和Sn=-n2+10n,則數(shù)列{|an|}的前n項(xiàng)和Tn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)z=2i(1-$\sqrt{3}i$),則z的虛部為( 。
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2iD.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=-$\frac{{x}^{2}+2x+4}{x}$,g(x)=$\frac{11x•{3}^{x-1}-{2}^{x}}{{3}^{x}}$,實(shí)數(shù)a,b滿足a<b<0,若?x1∈[a,b],?x2∈[-1,1]使得f(x1)=g(x2)成立,則b-a的最大值為( 。
A.3B.4C.5D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列賦值語句正確的是(  )
A.a=b=4B.a=a+2C.a-b=2D.5=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中,真命題是( 。
A.“x>2”是”x2-x-2>0”必要條件B.“$\overrightarrow{a}$•$\overrightarrow$=0”是“$\overrightarrow{a}$⊥$\overrightarrow$”充要條件
C.?x∈R,x2+$\frac{1}{{{x^2}+1}}$≥1D.?x∈R,cosx+sinx>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x(x+4),x>0}\\{x(x-4),x≤0}\end{array}\right.$,則f(a)的值不可能為( 。
A.2016B.0C.-2D.$\frac{1}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式x2+x-2>0的解集為(  )
A.{x|x<-2或x>1}B.{x|-2<x<1}C.{x|x<-1或x>2}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)y=x2+2mx+m在[0,1]上不單調(diào),則f(m)的最小值為-$\frac{1}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案