分析 由等差數(shù)列的前n項和公式,先求出其通項公式,從而得到當n≤5時,Tn=Sn;當n≥6時,Tn=-Sn+2S5.由此能求出數(shù)列{|an|}的前n項和Tn.
解答 解:∵等差數(shù)列{an}的前n項和Sn=-n2+10n,
∴an=Sn-Sn-1=-n2+10n-[-(n-1)2+10(n-1)]=-2n+11,n≥2,
n=1時,a1=S1=-1+10=9,
滿足上式,∴an=-2n+11,n∈N*.
an=-2n+11≥0,解得n$≤\frac{11}{2}$,
a5=-2×5+11=1>0,a6=-2×6+11=-1<0,
∴當n≤5時,Tn=Sn=-n2+10n.
當n≥6時,Tn=-Sn+2S5=n2-10n+50.
∴Sn=$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.
故答案為:$\left\{\begin{array}{l}{-{n}^{2}+10n,n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.
點評 本題考查數(shù)列的通項公式的求法,是中檔題,解題時要認真審題,注意等差數(shù)列的性質的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | $\frac{-1-\sqrt{17}}{8}$ | C. | -3 | D. | $\frac{-1±\sqrt{17}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com