分析 利用基本不等式求得$\frac{2x}{1{+x}^{2}}$∈[-1,1],再利用反正切函數(shù)的定義求得函數(shù)的值域.
解答 解:x>0時,∵$\frac{2x}{1{+x}^{2}}$≤$\frac{2x}{2x}$=1,同理可得$\frac{2x}{1{+x}^{2}}$≥-1,即$\frac{2x}{1{+x}^{2}}$∈[-1,1],
∴函數(shù)y=arctan$\frac{2x}{1+{x}^{2}}$的值域為[-$\frac{π}{4}$,$\frac{π}{4}$].
點評 本題主要考查基本不等式的應(yīng)用,反正切函數(shù)的定義,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{6}$,$\frac{π}{2}$) | B. | [$\frac{π}{3}$,$\frac{π}{2}$) | C. | (0,$\frac{π}{6}$] | D. | (0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com