在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,則cos∠DAC=( 。
A、
10
10
B、
3
10
10
C、
5
5
D、
2
5
5
考點:余弦定理的應(yīng)用,三角形中的幾何計算
專題:解三角形
分析:畫出圖形求出△ACD的三個邊長,利用余弦定理求解即可.
解答: 解:如圖:直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,
不妨令A(yù)B=2,則BC=CD=1,作ED⊥AB于E,可得AD=
2
,
AC=
AB2+BC2
=
5

在△ACD中,由余弦定理可得:
coscos∠DAC=
AD2+AC2-CD2
2AD•AC
=
2+5-1
2
×
5
=
3
10
10

故選:B.
點評:本題考查三角形的解法,余弦定理的應(yīng)用,畫出圖形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從高h米的小島看正東方向有一只船俯角為30°,看正南方向有一只船俯角為45°,則此時兩船間的距離為( 。
A、2h米
B、
2
h米
C、
3
h米
D、2
2
h米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在等腰Rt△AOB中,OA=OB=1,
AB
=4
AC
,則
OC
•(
OB
-
OA
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相切,則雙曲線的離心率為(  )
A、
4
3
B、
3
2
C、
2
5
5
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD的底面是邊長為2的正方形,每條側(cè)棱的長都是底面邊長的
2
倍,P為側(cè)棱SD上的點.
(Ⅰ)當(dāng)SP:PD為何值時,直線SD⊥平面PAC,
(Ⅱ)在(1)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}共有9項,其中a1=a9=1,且對每個i∈{1,2…,8},均有
ai+1
ai
∈{2,1,-
1
2
}|,記S=
a2
a1
+
a3
a2
+…+
a9
a8
,則S的最小值為( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

依據(jù)三角函數(shù)線,做出如下四個判斷:①sin
π
6
=sin
6
;②cos
π
4
=cos(-
π
4
);③tan
π
8
>tan
8
;④sin
5
>sin
5
,其中判斷正確的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4枚完全相同的硬幣,每個硬幣都分正反兩面,把4枚硬幣擺成一摞,滿足相鄰兩枚硬幣的正面與正面不相對,不同的擺法有
 
 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x+1|-b|2x-4|(a,b∈R)
(Ⅰ)當(dāng)a=1,b=
1
2
時,解不等式f(x)≤0
(Ⅱ)當(dāng)b=1時,若函數(shù)f(x)既存在最小值,也存在最大值.求所有滿足條件的實數(shù)a的集合.

查看答案和解析>>

同步練習(xí)冊答案