分析 (1)利用圓的切線的性質(zhì),即可證明AC∥OD;
(2)不妨設AC=3,AB=5,連接BC,則BC⊥AC,BC∥ED,求出ED,即可證明:AF=$\frac{8}{5}$FD.
解答 證明:(1)∵ED為⊙O的一條切線,且D為切點,
∴ED⊥OD,
∵sin∠AED=1,
∴ED⊥AE,
∴AC∥OD;
(2)不妨設AC=3,AB=5,連接BC,則BC⊥AC,BC∥ED,
∴四邊形ECGD為矩形,CG=ED=2,
由切割線定理可得,ED2=EC•EA,
∴22=ED•(ED+3),
∴ED=1,
∴AE=4,
∵AC∥OD,
∴$\frac{AF}{FD}$=$\frac{AE}{OD}$=$\frac{8}{5}$,
∴AF=$\frac{8}{5}$FD.
點評 本題考查圓的切線的性質(zhì),考查切割線定理,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9$\sqrt{3}$ | B. | 9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$ | C. | 12$\sqrt{2}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x>0} | B. | {x|x<0} | C. | {x|x<-1或0<x<1} | D. | {x|x<-1或x>1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)在R上單調(diào)遞增 | B. | f(x)在R上是常數(shù) | C. | f(x)在R上不單調(diào) | D. | f(x)在R上單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 歸納推理 | B. | 合情推理 | C. | 演繹推理 | D. | 類比推理 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com