19.已知函數(shù)y=f(x)(x∈R)導(dǎo)函數(shù)為f′(x),f(0)=2,且f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為( 。
A.{x|x>0}B.{x|x<0}C.{x|x<-1或0<x<1}D.{x|x<-1或x>1}

分析 令g(x)=exf(x)-ex-1,利用導(dǎo)數(shù)可判斷函數(shù)g(x)的單調(diào)性,由已知條件可得函數(shù)g(x)的零點(diǎn),由此可解得不等式.

解答 解:令g(x)=exf(x)-ex-1,則g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)>1,
∴f(x)+f′(x)-1>0,
∴g′(x)>0,即g(x)在R上單調(diào)遞增,
又f(0)=2,∴g(0)=e0f(0)-e0-1=2-1-1=0,
故當(dāng)x>0時(shí),g(x)>g(0),即exf(x)-ex-1>0,整理得exf(x)>ex+1,
∴exf(x)>ex+1的解集為{x|x>0}.
故選A.

點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性的性質(zhì)及其應(yīng)用,考查抽象不等式的求解,考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:AC是∠DAB的平分線;
(Ⅱ)求證:OF∥AG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,已知直線l上兩點(diǎn)M、N的極坐標(biāo)分別為(3,π),($\sqrt{3}$,$\frac{π}{2}$).
(Ⅰ)設(shè)P為線段MN上的動(dòng)點(diǎn),求線段OP取得最小值時(shí),點(diǎn)P的直角坐標(biāo);
(Ⅱ)求以MN為直徑的圓C的參數(shù)方程,并求在(Ⅰ)的條件下直線OP與圓C相交所得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中g(shù)(x)的函數(shù)圖象在點(diǎn)(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)若a≤0,判斷函數(shù)g(x)的單調(diào)性;
(Ⅲ)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),求證:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖為函數(shù)f(x)的圖象,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則不等式$\frac{f'(x)}{x}$<0的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知AB過(guò)⊙O的圓心,E為圓外的一點(diǎn),ED為⊙O的一條切線,且D為切點(diǎn),EA為⊙O的一條割線,且交⊙O于C,sin∠AED=1
(1)求證:AC∥OD;
(2)若5AC-3AB=0,證明:AF=$\frac{8}{5}$FD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),\;x>2.\end{array}$,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,22015]內(nèi)的所有零點(diǎn)的和為$\frac{3}{2}$•(22015-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=xe-x的單調(diào)遞減區(qū)間是( 。
A.(1,+∞)B.(-∞,-1)C.(-∞,1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若對(duì)任意的x>0,f(x)≥0恒成立,求a的取值范圍;
(3)若a=1,定義函數(shù)g(x)=[f(x)-$\frac{1}{x}$]•ex+x(其中e為自然對(duì)數(shù)的底數(shù)),問(wèn)曲線y=g(x)上是否在不同的兩點(diǎn)M,N,使得直線MN的斜率等于1?若存在,求出符合條件的一條直線MN的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案