【題目】已知2件次品和3件正品混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.

)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;

)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列和數(shù)學(xué)期望.

【答案】;(

【解析】試題分析:(1)求古典概型概率,先確定兩次檢測(cè)基本事件個(gè)數(shù): ,再確定第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的基本事件個(gè)數(shù),從而得所求事件概率為2)先確定隨機(jī)變量:最少兩次(兩次皆為次品),最多四次(前三次兩次正品,一次次品),三次情況較多,可利用補(bǔ)集求其概率,列出分布列,最后根據(jù)數(shù)學(xué)期望公式求期望

試題解析:解:)記第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品為事件,

的可能取值為200,300,400

(或

的分布列為

X

200

300

400

P




練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的三個(gè)頂點(diǎn)分別為A(1,0),B(1,4),C(3,2),直線l經(jīng)過(guò)點(diǎn)D(0,4).
(1)判斷△ABC的形狀;
(2)求△ABC外接圓M的方程;
(3)若直線l與圓M相交于P,Q兩點(diǎn),且PQ=2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)B(1,2)作兩條互相垂直的直線l1和l2 , l1交y軸正半軸于點(diǎn)A,l2交x軸正半軸于點(diǎn)C.

(1)若A(0,1),求點(diǎn)C的坐標(biāo);
(2)試問(wèn)是否總存在經(jīng)過(guò)O,A,B,C四點(diǎn)的圓?若存在,求出半徑最小的圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題。
(1)作出不等式x+y﹣3≤0在坐標(biāo)平面內(nèi)表示的區(qū)域(用陰影部分表示);
(2)求不等式x2﹣3x+2<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1) 當(dāng)時(shí),解關(guān)于的不等式;

(2) 若對(duì)任意時(shí),恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2 (a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時(shí),f(x)>m恒成立.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng),某校高二年級(jí)有男生500人,女生400人,為了了解性別對(duì)維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高二年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻率統(tǒng)計(jì)表如表: 表一:男生測(cè)評(píng)結(jié)果統(tǒng)計(jì)

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

x

5

表二:女生測(cè)評(píng)結(jié)果統(tǒng)計(jì)

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

3

y

參考數(shù)據(jù):

P(K2≥k0

0.10

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

(參考公式: ,其中n=a+b+c+d).
(1)計(jì)算x,y的值;
(2)由表一表二中統(tǒng)計(jì)數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是公差不為0的等差數(shù)列, 是等比數(shù)列,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前n項(xiàng)的和

查看答案和解析>>

同步練習(xí)冊(cè)答案