如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P,Q,R分別是棱AB,CC1,D1A1的中點.
(1)求證:B1D^平面PQR;
(2)設二面角B1-PR-Q的大小為q,求|cosq|.

解:(1)在正方體中,以點A為原點,分別以
在直線為軸,軸,軸,建立如圖所示的空間直角坐標系。

由于棱長為,所以 
所以,
因為       

所以  
即:
 且,所以,
(2)由(1)知,的一個法向量
是平面的一個法向量,因為
則由  得
  則 
即:平面的一個法向量
所以 
所以 

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

矩形中,⊥面,,上的點,且⊥面,交于點.
(1)求證:;
(2)求證://面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)如圖,在三棱柱ABC—A1B1C1中,側面BB1C1C,已知AB=BC=1,BB1=2,,E為CC1的中點。

(1)求證:平面ABC;
(2)求二面角A—B1E—B的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正△ABC的邊長為4,CD是AB邊上的高,E、F分別是AC和BC邊的中點,現(xiàn)將△ABC沿CD翻折成直二面角A—DC—B。
(1)試判斷直線AB與平面DEF的位置關系,并說明理由;
(2)求二面角E—DF—C的余弦值;
(3)在線段BC上是否存在一點P,使AP⊥DE?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知三棱柱的三視圖如圖所示,其中正視圖和側視圖均為矩形,俯視圖中,。
(I)在三棱柱中,求證:
(II)在三棱柱中,若是底邊
的中點,求證:平面;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本小題滿分12分)如圖,在三棱柱中,,,分別為,的中點.
(1)求證:∥平面; (2)求證:平面
(3)直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知向量a=(1,1,0),b=(-1,0,2),且ka+b與2a-b互相垂直,則k值是(  )

A.1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四邊形ABCD是矩形,P∉平面ABCD,過BC作平面BCFE交AP于E,交DP于F.求證:四邊形BCFE是梯形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為(   )

A.(0,0,1) 
B.(0,0,2) 
C.(0,0,
D.(0,0,

查看答案和解析>>

同步練習冊答案