【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,,對于函數(shù),若存在,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù),是否是“函數(shù)”;

2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

【答案】1是,不是;(21;(3,且,.

【解析】

1)舉例說明函數(shù)函數(shù),證明函數(shù)不是“函數(shù)”;

(2)假設(shè),得到矛盾,再證明得證;

3)對三種情況討論得解.

1)對于函數(shù)函數(shù),設(shè),

,

所以存在,,使得,所以函數(shù)是“函數(shù)”.

對于函數(shù),函數(shù)的最小正周期為,函數(shù)的圖象如圖所示,

不妨研究函數(shù)在[0,1]這個周期的圖象.

設(shè),則,

所以

所以函數(shù)不是“函數(shù)”.

綜合得函數(shù)是“函數(shù)”,函數(shù)不是“函數(shù)”.

2的最小值為1

因為是以為最小正周期的周期函數(shù),所以

假設(shè),則,所以,矛盾.

所以必有.

而函數(shù)的周期為1,且顯然不是函數(shù),

綜上所述,的最小值為1

3)當(dāng)函數(shù)是“函數(shù)”時,

,則顯然不是函數(shù),矛盾.

,則

所以上單調(diào)遞增,

此時不存在,使得

同理不存在,使得,

又注意到,即不會出現(xiàn)的情形,

所以此時不是函數(shù).

當(dāng)時,設(shè),所以,

所以有,其中,

當(dāng)時,

因為,所以,

所以,

當(dāng)時,,

因為,所以,

所以,

綜上所述,,且,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從某學(xué)校中選出名學(xué)生,統(tǒng)計了名學(xué)生一周的戶外運(yùn)動時間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計表格.

1)寫出的值,并估計該學(xué)校人均每周的戶外運(yùn)動時間(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)從該校學(xué)生中抽取5名學(xué)生,記5名學(xué)生中每周戶外運(yùn)動時長在的人數(shù)為,求的分布列和數(shù)學(xué)期望;

3)完成下列列聯(lián)表,并回答能否有90%的把握認(rèn)為“每周至少運(yùn)動130分鐘與性別有關(guān)”?

每周戶外運(yùn)動時間不少于130分鐘

每周戶外運(yùn)動時間少于130分鐘

合計

合計

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)到焦點(diǎn)的距離為,若點(diǎn)為拋物線準(zhǔn)線上的動點(diǎn),給出以下命題:

①當(dāng)為正三角形時,的值為

②存在點(diǎn),使得

③若,則等于

的最小值為,則等于.

其中正確的是(

A.①③④B.②③C.①③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為F,P為其上一動點(diǎn),設(shè)直線l與拋物線C相交于A,B兩點(diǎn),點(diǎn)下列結(jié)論正確的是(

A.|PM| +|PF|的最小值為3

B.拋物線C上的動點(diǎn)到點(diǎn)的距離最小值為3

C.存在直線l,使得AB兩點(diǎn)關(guān)于對稱

D.若過A、B的拋物線的兩條切線交準(zhǔn)線于點(diǎn)T,則A、B兩點(diǎn)的縱坐標(biāo)之和最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有(

1)方程),表示的曲線在第二和第四象限;

2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過2

3)曲線構(gòu)成的四葉玫瑰線面積大于;

4)曲線上有5個整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

A.1)(2B.1)(2)(3

C.1)(2)(4D.1)(3)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,把上各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,關(guān)于有下述四個結(jié)論:

1)函數(shù)上是減函數(shù);

2)當(dāng),且時,,則;

3)函數(shù)(其中)的最小值為.

其中正確結(jié)論的個數(shù)為( .

A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形為菱形,且,取中點(diǎn)為.現(xiàn)將四邊形沿折起至,使得.

)求證:平面;

)求二面角的余弦值;

)若點(diǎn)滿足,當(dāng)平面時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了推進(jìn)分級診療,實現(xiàn)基層首診、雙向轉(zhuǎn)診、急慢分治、上下聯(lián)動的診療模式,某地區(qū)自2016年起全面推行家庭醫(yī)生簽約服務(wù).已知該地區(qū)居民約為2000萬,從1歲到101歲的居民年齡結(jié)構(gòu)的頻率分布直方圖如圖1所示.為了解各年齡段居民簽約家庭醫(yī)生的情況,現(xiàn)調(diào)查了1000名年滿18周歲的居民,各年齡段被訪者簽約率如圖2所示.

1)估計該地區(qū)年齡在71~80歲且已簽約家庭醫(yī)生的居民人數(shù);

2)若以圖2中年齡在71~80歲居民簽約率作為此地區(qū)該年齡段每個居民簽約家庭醫(yī)生的概率,則從該地區(qū)年齡在71~80歲居民中隨機(jī)抽取兩人,求這兩人中恰有1人已簽約家庭醫(yī)生的概率;

3)據(jù)統(tǒng)計,該地區(qū)被訪者的簽約率約為.為把該地區(qū)年滿18周歲居民的簽約率提高到以上,應(yīng)著重提高圖2中哪個年齡段的簽約率?并結(jié)合數(shù)據(jù)對你的結(jié)論作出解釋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.對于nN*n2),定義一個如下數(shù)陣:,其中對任意的1in,1jn,當(dāng)i能整除j時,aij1;當(dāng)i不能整除j時,aij0.設(shè)

(Ⅰ)當(dāng)n6時,試寫出數(shù)陣A66并計算;

(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:;

(Ⅲ)若,求證:gn)﹣1fn)<gn+1

查看答案和解析>>

同步練習(xí)冊答案