【題目】已知為坐標原點,拋物線上一點到焦點的距離為,若點為拋物線準線上的動點,給出以下命題:

①當為正三角形時,的值為

②存在點,使得

③若,則等于

的最小值為,則等于.

其中正確的是(

A.①③④B.②③C.①③D.②③④

【答案】A

【解析】

對于①可知,當為正三角形時與準線垂直,畫出圖形結合幾何關系即可求得的值;對于②根據(jù)向量關系可知,結合點的位置即可判斷;對于③,作出幾何圖形,根據(jù)線段比例關系即可求得的值;對于④,作關于準線的對稱點,連接交準線于,可知即為的最小值,根據(jù)線段幾何關系及最小值即可求得的值.

對于①,當為正三角形時,如下圖所示,

拋物線的準線交軸于,

,由拋物線定義可知,則與準線垂直,

所以,

,所以,

,即,所以①正確;

對于②,假設存在點,使得,即,

所以點為的中點,

由拋物線圖像與性質(zhì)可知,為拋物線上一點,為焦點,線段軸右側,

在拋物線準線上,在軸左側,因而不可能為的中點,所以②錯誤;

對于③,若,則,作垂直于準線并交于,準線交軸于,如下圖所示:

由拋物線定義可知

根據(jù)相似三角形中對應線段成比例可知,即

解得,所以③正確;

對于④,作關于準線的對稱點,連接交準線于,作垂直于準線并交于,作垂直于軸并交于,如下圖所示:

根據(jù)對稱性可知,此時即為的最小值,

由拋物線定義可知,所以的橫坐標為

代入拋物線可知,

的最小值為,

,即,

化簡可得,即,

解得,所以④正確;

綜上所述,正確的為①③④.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,曲線的方程為,以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.若將曲線上的所有點的橫坐標縮小到原來的一半,縱坐標伸長到原來的倍,得曲線

1)寫出直線和曲線的直角坐標方程;

2)設點 直線與曲線的兩個交點分別為,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學各自從備選的5道不同題中隨機抽出3道題進行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結束,假設由第一輪答題得分期望高的同學在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(最先答題的同學)作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學有機會答第道題且回答正確則該同學加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請預測第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中;

②求證為等比數(shù)列,并求)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高中三個年級共有4000人,為了了解各年級學周末在家的學習情況,現(xiàn)通過分層抽樣的方法獲得相關數(shù)據(jù)如下(單位:小時),其中高一學生周末的平均學習時間記為.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每個年級的學生人數(shù);

(2)從高三被抽查的同學中隨機抽取2人,求2人學習時間均超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的極值;

(2)當時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某學校中選出名學生,統(tǒng)計了名學生一周的戶外運動時間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計表格.

1)寫出的值,并估計該學校人均每周的戶外運動時間(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)假設,則戶外運動時長為的學生中,男生人數(shù)比女生人數(shù)多的概率.

3)若,完成下列列聯(lián)表,并回答能否有90%的把握認為“每周至少運動130分鐘與性別有關”?

每周戶外運動時間不少于130分鐘

每周戶外運動時間少于130分鐘

合計

合計

附:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別是橢圓的左,右焦點,兩點分別是橢圓的上,下頂點,是等腰直角三角形,延長交橢圓點,且的周長為.

1)求橢圓的方程;

2)設點是橢圓上異于的動點,直線與直分別相交于兩點,點,求證:的外接圓恒過原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,對于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.

1)判斷函數(shù),是否是“函數(shù)”;

2)設函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;

3)若函數(shù)是“函數(shù)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了比較兩種治療失眠癥的藥(分別稱為藥,藥)的療效,某機構隨機地選取 位患者服用藥,位患者服用藥,觀察這位患者的睡眠改善情況.這些患者服用一段時間后,根據(jù)患者的日平均增加睡眠時間(單位:),以整數(shù)部分當莖,小數(shù)部分當葉,繪制了如下莖葉圖:

1)根據(jù)莖葉圖判斷哪種藥對增加睡眠時間更有效?并說明理由;

2)求這名患者日平均增加睡眠時間的中位數(shù),并將日平均增加睡眠時間超過和不超過的患者人數(shù)填入下面的列聯(lián)表:

超過

不超過

服用

服用

3)根據(jù)(2)中的列聯(lián)表,能否有的把握認為兩種藥的療效有差異?

附: .

0.01

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案