分析 利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
解答 解:∵an=(2n-1)•3n,
則此數(shù)列的前n項和Sn=3+3×32+5×33+…+(2n-1)•3n,
∴3Sn=32+3×33+…+(2n-3)•3n+(2n-1)•3n+1,
∴-2Sn=3+2(32+33+…+3n)-(2n-1)•3n+1=2×$\frac{3({3}^{n}-1)}{3-1}$-3-(2n-1)•3n+1=(2-2n)3n+1-6,
∴Sn=(n-1)3n+1+3.
故答案為:(n-1)3n+1+3.
點評 本題考查了“錯位相減法”與等比數(shù)列的前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com