分析 cosB=$\frac{4}{5}$,B為銳角,可得sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$.由正弦定理可得:a=$\frac{5}{3}$m,當$1≥\frac{5}{3}$m或1=$\frac{5}{3}$m•$\frac{3}{5}$時,滿足條件的三角形只有一個,解出即可得出.
解答 解:在△ABC中,∵cosB=$\frac{4}{5}$,∴B為銳角,∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$.
由正弦定理可得:$\frac{1}{\frac{3}{5}}$=$\frac{a}{m}$,解得a=$\frac{5}{3}$m,
當$1≥\frac{5}{3}$m或1=$\frac{5}{3}$m•$\frac{3}{5}$時,滿足條件的三角形只有一個,
解得0<m≤$\frac{3}{5}$,或m=1.
∴m的取值范圍是0<m≤$\frac{3}{5}$,或m=1.
故答案為:0<m≤$\frac{3}{5}$,或m=1.
點評 本題考查了應用正弦定理解三角形,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,2] | B. | (-∞,-2)∪(2,+∞) | C. | (-2,2) | D. | (-∞,-2]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com