2.如圖,為了測(cè)量A、B兩點(diǎn)間的距離,在地面上選擇適當(dāng)?shù)狞c(diǎn)C,測(cè)得AC=100m,BC=120m,∠ACB=60°,那么A、B的距離為( 。
A.20$\sqrt{91}$ mB.20$\sqrt{31}$ mC.500 mD.60$\sqrt{66}$ m

分析 由題意,利用余弦定理可得A、B的距離.

解答 解:由題意,利用余弦定理可得AB=$\sqrt{10{0}^{2}+12{0}^{2}-2×100×120×\frac{1}{2}}$=20$\sqrt{31}$m.
故選:B.

點(diǎn)評(píng) 本題考查余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.用秦九韶算法計(jì)算多項(xiàng)f(x)=3x6+4x5-5x4-6x3+7x2-8x+1時(shí),當(dāng)x=0.4時(shí)的值時(shí),需要做乘法和加法的次數(shù)分別是( 。
A.6,6B.5,6C.5,5D.6,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{2}{3}{a_n}+1$,則{an}的通項(xiàng)公式是an=3•(-2)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=log${\;}_{\frac{1}{2}}$(-x2+6x-5)的單調(diào)遞減區(qū)間為(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.不等式-x2+2x+5<-2x的解集是( 。
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow a$=(2sinx,cosx),$\overrightarrow b$=($\sqrt{3}$cosx,2cosx),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+m$(x∈R),其中m為常數(shù).
(1)求函數(shù)y=f(x)的周期;
(2)如果y=f(x)的最小值為0,求m的值,并求此時(shí)f(x)的最大值及取得最大值時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)=$\left\{\begin{array}{l}{x,x∈(-∞,a)}\\{{x}^{2},x∈[a,+∞)}\end{array}\right.$,若f(2)=4,則a的取值范圍為a≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若f(x)和g(x)都是定義在R上的函數(shù),則“f(x)與g(x)同是奇函數(shù)”是“f(x)•g(x)是偶函數(shù)”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.求值${∫}_{2}^{4}$($\frac{1}{x}$+x)dx=ln2+6.

查看答案和解析>>

同步練習(xí)冊(cè)答案