精英家教網 > 高中數學 > 題目詳情
17.不等式-x2+2x+5<-2x的解集是( 。
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

分析 把不等式化為(x+1)(x-5)>0,求出對應方程的實數解,寫出該不等式的解集即可.

解答 解:不等式-x2+2x+5<-2x等價于x2-4x-5>0,
即為(x+1)(x-5)>0,解得x<-1或x>5,
故選:B.

點評 本題考查了一元二次不等式的解法與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

7.以下四個命題中:
①在回歸分析中,可用相關指數R2的值判斷模型的擬合效果,R2越大,模擬的擬合效果越好;
②兩個隨機變量的線性相關性越強,相關系數的絕對值越接近于1;
③對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y無關系”的把握程度越大;
④對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y有關系”的把握程度越大.
其中真命題的個數為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.在銳角△ABC中,已知∠A,∠B,∠C成等差數列,設y=sinA-cos(A-C+2B),則y的取值范圍是(0,2).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.2016年04月13日“山東濟南非法經營疫苗系列案件”披露后,引發(fā)社會高度關注,引起公眾、受種者和兒童家長對涉案疫苗安全性和有效性的擔憂.為采取后續(xù)處置措施提供依據,保障受種者的健康,盡快恢復公眾接種疫苗的信心,科學嚴謹地分析涉案疫苗接種給受種者帶來的安全性風險和是否有效,對某疫苗預防疾病的效果,進行動物實驗,得到統(tǒng)計數據如表,現從所有試驗動物中任取一只,取到“注射疫苗”動物的概率為$\frac{2}{5}$.
(1)求2×2列聯(lián)表中的數據x,y,A,B的值;
未發(fā)病發(fā)病合計
未注射疫苗20xA
注射疫苗30yB
合計5050100
(2)繪制發(fā)病率的條形統(tǒng)計圖,并判斷疫苗是否有效?
(3)能夠有多大把握認為疫苗有效?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.方程($\frac{1}{3}$)x=|x2-4x+3|的解的個數為5.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.如圖,為了測量A、B兩點間的距離,在地面上選擇適當的點C,測得AC=100m,BC=120m,∠ACB=60°,那么A、B的距離為( 。
A.20$\sqrt{91}$ mB.20$\sqrt{31}$ mC.500 mD.60$\sqrt{66}$ m

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.如圖,在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2\sqrt{2}}{3}$,經過橢圓的左頂點A(-3,0)作斜率為k(k≠0)的直線l交橢圓C于點D,交軸于點E
(1)求橢圓C的方程;
(2)已知點P為線段AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.(文)二次函數y=x2+bx的圖象如圖,對稱軸為x=1.若關于x的二次方程x2+bx-t=0(為實數)在-1<x<4的范圍內有解,則t的取值范圍是(  )
A.-1≤t<3B.t≥-1C.3<t<8D.-1≤t<8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.函數y=$\sqrt{x+1}$+lg(x-2)的定義域是( 。
A.[-1,+∞)B.(-∞,2)C.[1,2)D.(2,+∞)

查看答案和解析>>

同步練習冊答案