(本小題滿分14分)
如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A—VB—D的余弦值.
(1)只需證VD∥EO;(2)。
解析試題分析:(1)由正視圖可得:平面VAB⊥平面ABCD,連接BD交AC于O 點,連EO,由已知可得BO=OD,
VE=EB
∴ VD∥EO
又VD平面EAC,EO平面EAC
∴ VD∥平面EAC
(2)設AB的中點為P,則由題意可知VP⊥平面ABCD,
建立如圖所示坐標系
設=(x,y,z)是平面VBD法向量,
=(-2,2,0)
由,
∴
∴
∴二面角A—VB—D的余弦值
考點:三視圖;線面平行的判定定理;二面角的求法。
點評:綜合法求二面角,往往需要作出平面角,這是幾何中一大難點,而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經(jīng)過簡單運算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個半平面內與棱垂直的異面直線,則二面角的大小就是向量與的夾角; ②設分別是二面角的兩個面α,β的法向量,則向量的夾角(或其補角)的大小就是二面角的平面角的大小。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.
(1)證明:平面PBE平面PAB;
(2)求平面PAD和平面PBE所成二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題12分)如圖,在長方體ABCD-A1B1C1D1中,E, F分別是棱BC,CC1上的點,CF="AB=2CE," AB:AD:AA1=1:2:4.
(Ⅰ)求異面直線EF與A1D所成角的余弦值;
(Ⅱ)證明AF⊥平面A1ED;
(Ⅲ)求二面角A1-ED-F的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
正方體ABCD-A1B1C1D1中,E、G分別是BC、C1D1的中點,如圖所示.
(1)求證:BD⊥A1C;
(2)求證:EG∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.試探究點M的位置,使F—AE—M為直二面角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com