三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

(1)證明:平面PAB⊥平面PBC;
(2)若PA=,PC與側(cè)面APB所成角的余弦值為,PB與底面ABC成60°角,求二面角B―PC―A的大小。
(1)證明詳見解析;(2)60°

試題分析:(Ⅰ)先利用線面垂直的判定定理證明BC⊥平面PAB,再利用面面垂直的判定定理證明平面PAB⊥平面PBC;(2)過A作則ÐEFA為所求.然后求出AB=,PB=2,PC=3及AE,AF,在RtAEF中求解即可.
試題解析: (1)證明:∵PA^面ABC,\PA^BC,   ∵AB^BC,且PA∩AB=A,\BC^面PAB
而BCÌ面PBC中,\面PAB^面PBC. ……5分
(2)過A作

則ÐEFA為B?PC?A的二面角的平面角     8分
由PA=,在RtDPBC中,cosÐCPB=.
RtDPAB中,ÐPBA=60°. \AB=,PB=2,PC=3  \AE=  =
同理:AF=         10分
∴sin==,        11分
=60°.          12分
另解:向量法:由題可知:AB=,BC=1,建立如圖所示的空間直角坐標(biāo)系        7分
B(0,0,0),C(1,0,0),A(0,,0),P(0,,),假設(shè)平面BPC的法向量為=(x1,y1,z1),

取z1=,可得平面BPC法向量為=(0,?3,)      9分
同理PCA的法向量為=(2,?,0)              11分
∴cos<,>==,所求的角為60°         12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐中,底面是平行四邊形,平面,垂足為上且,,的中點,四面體的體積為.

(1)求二面角的正切值;
(2)求直線到平面所成角的正弦值;
(3)在棱上是否存在一點,使異面直線所成的角為,若存在,確定點的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一個斜三棱柱,已知、平面平面、,又、分別是的中點.

(1)求證:∥平面; (2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱中,已知平面,且

(1)求證:;
(2)在棱BC上取一點E,使得∥平面,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖1所示,正△ABC中,CD是AB邊上的高, E、F分別是AC、BC的中點.現(xiàn)將△ACD沿CD折起,使平面平面BCD(如圖2),則下列結(jié)論中不正確的是(  )

A.AB//平面DEF             B.CD⊥平面ABD
C.EF⊥平面ACD             D.V三棱錐C—ABD=4V三棱錐C—DEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩個不重合的平面和兩條不同直線,則下列說法正確的是(     )
A.若
B.若
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是兩條不同直線,、是兩個不同平面,則下列命題錯誤的是(      )
A.若,,則B.若,,則
C.若,,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a、b是不同的直線,、是不同的平面,給出下列命題:
①若,a,則a∥ ;   ②若a、b與所成角相等,則a∥b;
③若、,則;   ④若a⊥, a⊥,則
其中正確的命題的序號是              .

查看答案和解析>>

同步練習(xí)冊答案