13.已知數(shù)列{an}為等比數(shù)列,若a1+a2016=8,則a1(a1+2a2016+a4031)的值為64.

分析 由等比數(shù)列的通項公式推導出a1(a1+2a2016+a4031)=${{a}_{1}}^{2}+2{a}_{1}{a}_{2016}+{{a}_{2016}}^{2}$=$({a}_{1}+{a}_{2016})^{2}$,由此能求出結果.

解答 解:∵數(shù)列{an}為等比數(shù)列,a1+a2016=8,
∴a1(a1+2a2016+a4031
=${{a}_{1}}^{2}+2{a}_{1}{a}_{2016}+{a}_{1}{a}_{4031}$
=${{a}_{1}}^{2}+2{a}_{1}{a}_{2016}+{{a}_{2016}}^{2}$
=$({a}_{1}+{a}_{2016})^{2}$
=82=64.
故答案為:64.

點評 本題考查等比數(shù)列的代數(shù)式的值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸建立極坐標系.已知曲線C1的極坐標方程為ρ=8$\sqrt{2}$cos(θ-$\frac{3π}{4}$),曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$,(θ為參數(shù)).
(1)將曲線C1的極坐標方程化為直角坐標方程,將曲線C2的參數(shù)方程化為普通方程;
(2)若P是曲線C2上的動點,求P到直線l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$,(t為參數(shù))的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某校高三文科500名學生參加了3月份的高考模擬考試,學校為了了解高三文科學生的歷史、地理學習情況,從500名學生中抽取100名學生的成績進行統(tǒng)計分析,抽出的100名學生的地理、歷史成績如表:
地理
歷史
[80,100][60,80][40,60]
[80,100]8m9
[60,80]9n9
[40,60]8157
若歷史成績在[80,100]區(qū)間的占30%,
(1)求m,n的值;
(2)請根據(jù)上面抽出的100名學生地理、歷史成績,填寫下面地理、歷史成績的頻數(shù)分布表:
[80,100][60,80][40,60]
地理
歷史
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計歷史和地理的平均成績及方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表),并估計哪個學科成績更穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓C1:$\frac{x^2}{m+1}$+$\frac{y^2}{3-n}$=1與雙曲線C2:$\frac{x^2}{m}$-$\frac{y^2}{-n}$=1有相同的焦點,則雙曲線C2的一條斜率為正的漸近線的傾斜角的取值范圍為( 。
A.(45°,90°)B.(45°,90°]C.(0,45°)D.(45°,60°)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.依次連接正六邊形各邊的中點,得到一個小正六邊形,再依次連接這個小正六邊形各邊的中點,得到一個更小的正六邊形,往原正六邊形內隨機灑一粒種子,則種子落在最小的正六邊形內的概率為( 。
A.$\frac{3}{4}$B.$\frac{9}{16}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關曲線”.已知F1、F2是一對相關曲線的焦點,P是它們在第一象限的交點,當∠F1PF2=30°時,這一對相關曲線中橢圓的離心率是( 。
A.7-4$\sqrt{3}$B.2-$\sqrt{3}$C.$\sqrt{3}$-1D.4-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某中學高三年級從甲、乙兩個班級各選出7名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖,其中甲班學生的平均分是85.
(Ⅰ) 計算甲班7位學生成績的方差s2; 
(Ⅱ)從成績在90分以上的學生中隨機抽取兩名學生,求甲班至少有一名學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在平面直角坐標系xOy中,過定點Q(1,1)的直線與曲線y=$\frac{x}{x-1}$交于M,N兩點,則$\overrightarrow{OQ}$•$\overrightarrow{OM}$-$\overrightarrow{OQ}$•$\overrightarrow{NO}$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若實數(shù)a,b滿足$\frac{4}{a}$+$\frac{1}$=$\sqrt{ab}$,則ab的最小值為4.

查看答案和解析>>

同步練習冊答案