4.某校高三文科500名學(xué)生參加了3月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從500名學(xué)生中抽取100名學(xué)生的成績進行統(tǒng)計分析,抽出的100名學(xué)生的地理、歷史成績?nèi)绫恚?br />
地理
歷史
[80,100][60,80][40,60]
[80,100]8m9
[60,80]9n9
[40,60]8157
若歷史成績在[80,100]區(qū)間的占30%,
(1)求m,n的值;
(2)請根據(jù)上面抽出的100名學(xué)生地理、歷史成績,填寫下面地理、歷史成績的頻數(shù)分布表:
[80,100][60,80][40,60]
地理
歷史
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計歷史和地理的平均成績及方差(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表),并估計哪個學(xué)科成績更穩(wěn)定.

分析 (1)根據(jù)圖表,利用它們的數(shù)量關(guān)系即可求出m、n的值;
(2)根據(jù)題意,分別求出地理、歷史成績在各分數(shù)段內(nèi)的人數(shù),填頻率分布表,計算對應(yīng)的平均數(shù)與方差.

解答 解:(1)∵由歷史成績在[80,100]區(qū)間的占30%,
∴$\frac{8+m+9}{100}$=0.3,解得m=13,
∴n=100-8-9-8-15-9-9-7-13=22;(3分)
(2)根據(jù)題意,可得地理成績在[80,100]內(nèi)的人數(shù)為8+9+8=25,
在[60,80]內(nèi)的人數(shù)為13+22+15=50,
在[40,60]內(nèi)的人數(shù)為9+9+7=25;
同理,歷史成績在[80,100]內(nèi)的人數(shù)為30,
在[60,80]內(nèi)的人數(shù)為40,
在[40,60]內(nèi)的人數(shù)為30;填表如下:

 [80,100][60,80][40,60]
地理255025
歷史304030
計算平均數(shù)與方差為$\overline{{x}_{地理}}$=$\frac{90×25+70×50+50×25}{100}$=70,
${{S}_{地理}}^{2}$=$\frac{1}{100}$×[25×(90-70)2+50×(70-70)2+25×(50-70)2]=200;
$\overline{{x}_{歷史}}$=$\frac{90×30+70×40+50×30}{100}$=70,
${{S}_{歷史}}^{2}$=$\frac{1}{100}$×[30×(90-70)2+40×(70-70)2+30×(50-70)2]=240;
從以上計算數(shù)據(jù)來看,地理學(xué)科的成績更穩(wěn)定.…(12分)

點評 本題考查了頻率分布表的應(yīng)用問題,也考查了平均數(shù)與方差的計算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實數(shù)x,y滿足x+2y=1,則$\frac{y}{2x}$+$\frac{1}{y}$的最小值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.以坐標軸為對稱軸,原點為頂點,且過圓x2+y2-2x+6y+9=0圓心的拋物線方程是y2=9x或x2=$-\frac{1}{3}$y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題“存在x0>1,使得${x}_{0}^{2}$-x0+2016>0”的否定是?x>1,x2-x+2016≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2015年10月青島大排檔宰客一只大蝦賣38元,被網(wǎng)友稱為“天價大蝦”,為了弄清楚大蝦的實際情況,記者調(diào)查了青島市45家蝦類養(yǎng)殖戶,發(fā)現(xiàn)主要使用兩種飼料豆粕、海藻粉,數(shù)據(jù)如表:
使用豆粕未使用豆粕
使用海藻粉85
未使用海藻粉230
(1)從45家蝦類養(yǎng)殖戶中隨機選1戶,求該養(yǎng)殖戶至少使用豆粕、海藻粉一種的概率.
(2)在既使用豆粕又使用海藻粉的8戶養(yǎng)殖戶中,有5戶大型養(yǎng)殖戶A1,A2,A3,A4,A5,3戶中型養(yǎng)殖戶B1,B2,B3.現(xiàn)從這5戶大型養(yǎng)殖戶和3戶中型養(yǎng)殖戶中各隨機選1戶,求A1被選中且B1未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,點M、N分別為BC、PA的中點,且PA=AD=2,AB=1,AC=$\sqrt{3}$.
(1)求證:CD⊥平面PAC;
(2)在線段PD上是否存在一點E,使得MN∥平面ACE;若存在,求出三棱錐P-ACE的體積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:mx2+ny2=1(m<0,n>0)的一條漸近線與圓x2+y2-6x-2y+9=0相切,則C的離心率等于( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{25}{16}$D.$\frac{5}{3}$或$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}為等比數(shù)列,若a1+a2016=8,則a1(a1+2a2016+a4031)的值為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={-2,0,2},B={x|x2-x-2=0},則∁A(A∩B)=( 。
A.{-2,0}B.{2,0}C.{-2,-1,0}D.{2,1,0}

查看答案和解析>>

同步練習(xí)冊答案