【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足.
(1)求數(shù)列的通項公式.
(2)設(shè),求數(shù)列的前項和.
【答案】(1);(2).
【解析】
試題分析:(1)由當(dāng)時,,兩式相減得
.又當(dāng)時,
是以首項,公比的等比數(shù)列的通項公式為;(2)由(1)知, .
試題解析: (1)因?yàn)?/span>,
所以,當(dāng)時,,................................1分
兩式相減得,即................3分
又當(dāng)時,,即..........4分
所以是以首項,公比的等比數(shù)列,
所以數(shù)列的通項公式為.......................6分
(2)由(1)知,,...................7分
則,①
,②.................8分
②-①得
,................................10分
,................................11分
所以,數(shù)列的前項和為..............................12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】輪船由甲地逆水勻速行駛至乙地,甲、乙兩地相距s(km),水流速度為p(km/h),輪船在靜水中的最大速度為q(km/h)(p,q為常數(shù),且q>p),已知輪船每小時的燃料費(fèi)用與輪船在靜水中的速度v(km/h)成正比,比例系數(shù)為常數(shù)k.
(1)將全程燃料費(fèi)用y(元)表示為靜水中速度v(km/h)的函數(shù);
(2)若s=100,p=10,q=110,k=2,為了使全程的燃料費(fèi)用最少,輪船的實(shí)際行駛速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量的取值為不大于的非負(fù)整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中()滿足: ,且.
定義由生成的函數(shù),令.
(I)若由生成的函數(shù),求的值;
(II)求證:隨機(jī)變量的數(shù)學(xué)期望, 的方差;
()
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量表示兩次擲出的點(diǎn)數(shù)之和,此時由生成的函數(shù)記為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機(jī)對50名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為平均車速超過的人與性別有關(guān);
平均車數(shù)超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨即抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望
參考公式:,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學(xué)校的義務(wù)勞動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|ax2-2x+2=0},集合B={y|y2-3y+2=0},如果AB,求實(shí)數(shù)a的取值集合..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域;
(2)已知,分別為中角的對邊,且滿足,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1=4,D是A1C1中點(diǎn).
(1)求證:A1B∥平面B1CD;
(2)當(dāng)三棱錐C-B1C1D體積最大時,求點(diǎn)B到平面B1CD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口P在AB上,且,根據(jù)規(guī)劃,過點(diǎn)P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點(diǎn)M,N分別在邊AD,BC上(包含端點(diǎn)),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PNM,PN進(jìn)行不同風(fēng)格的美化,PM小路的美化費(fèi)用為每百米1萬元,PN小路的美化費(fèi)用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費(fèi)用最低,并求出最小費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com