2.過點(1,2)可作圓x2+y2+2x-4y+k-2=0的兩條切線,則k的取值范圍是(3,7).

分析 把已知圓的方程化為標準方程后,找出圓心坐標和半徑r,利用兩點間的距離公式求出點到圓心的距離d,過點(1,2)可作圓x2+y2+2x-4y+k-2=0的兩條切線,可得P在圓外,即P到圓心的距離d大于圓的半徑r,令d大于r列出關于k的不等式,同時考慮7-k大于0,兩不等式求出公共解集即可得到k的取值范圍.

解答 解:把圓的方程化為標準方程得:(x+1)2+(y-2)2=7-k,
∴圓心坐標為(-1,2),半徑r=$\sqrt{7-k}$,
則點(1,2)到圓心的距離d=2,
由題意可知點(1,2)在圓外時,過點(1,2)總可以向圓x2+y2+2x-4y+k-2=0作兩條切線,
∴d>r即$\sqrt{7-k}<2$,且7-k>0,解得:3<k<7,
則k的取值范圍是(3,7).
故答案為:(3,7).

點評 本題考查了點與圓的位置關系的判別方法,靈活運用兩點間的距離公式化簡求值,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.直線(1+a2)x-y+2=0的傾斜角的取值范圍是(  )
A.[0,$\frac{3π}{4}$]B.[0,$\frac{π}{4}$]C.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,$\frac{3π}{4}$]D.[$\frac{π}{4}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.甲、乙、丙三人,一人在看書,一人在畫畫,一人在聽音樂.已知:①甲不看書;②若丙不畫畫,則乙不聽音樂;③若乙在看書,則丙不聽音樂.則( 。
A.甲一定在畫畫B.甲一定在聽音樂C.乙一定不看書D.丙一定不畫畫

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.e為自然對數(shù)的底數(shù),定義函數(shù)shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,若已知函數(shù)f(x)為奇函數(shù),且滿足f(1)=ch1,當x>0時,f(x)+xf′(x)>shx.則f(x)<$\frac{chx}{x}$的解集為(-1,0)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在長方體ABCD-A1B1C1D1中,E是A1C1與B1D1的交點,AB=BC=$\sqrt{2}$,AA1=1.
(1)求證:AE∥平面C1BD;
(2)求證:CE⊥平面C1BD;
(3)求二面角A-BC1-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=$\frac{2}{x}$,則f′(1)=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.下列說法中正確的是①②③.
①設隨機變量X服從二項分布B(6,$\frac{1}{2}$),則P(X=3)=$\frac{5}{16}$
②對任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x)
③若f′(x0)=-3,則$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=-12
④E(2X+3)=2E(X)+3,D(2X+3)=2D(X)+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,某房子屋檐A點離地面15米.房子上另一點B離地面9米,而且A,B兩點在同一鉛垂線上,在離地面7米的C處看此房子,問水平距離離此房子多遠時A,B的視角(∠ACB)最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設變量x,y滿足約束條件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,則$\frac{y+2}{x-2}$的取值范圍是( 。
A.[-5,$\frac{5}{3}$]B.[-5,0)∪[$\frac{5}{3}$,+∞)C.(-∞,-5]∪[$\frac{5}{3}$,+∞)D.[-5,0)∪(0,$\frac{5}{3}$]

查看答案和解析>>

同步練習冊答案