12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,則$\frac{y+2}{x-2}$的取值范圍是( 。
A.[-5,$\frac{5}{3}$]B.[-5,0)∪[$\frac{5}{3}$,+∞)C.(-∞,-5]∪[$\frac{5}{3}$,+∞)D.[-5,0)∪(0,$\frac{5}{3}$]

分析 作出不等式組對應(yīng)的平面區(qū)域,利用直線斜率的幾何意義,結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
$\frac{y+2}{x-2}$的幾何意義是區(qū)域內(nèi)的點到定點D(2,-2)的斜率,
由$\left\{\begin{array}{l}{y-3=0}\\{3x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
由$\left\{\begin{array}{l}{y-3=0}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即B(5,3),
則AD的斜率k=$\frac{3+2}{1-2}$=-5,
BD的斜率k=$\frac{3+2}{5-2}$=$\frac{5}{3}$,
則$\frac{y+2}{x-2}$的取值范圍是k≥$\frac{5}{3}$或k≤-5,
即(-∞,-5]∪[$\frac{5}{3}$,+∞),
故選:C

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線斜率的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.過點(1,2)可作圓x2+y2+2x-4y+k-2=0的兩條切線,則k的取值范圍是(3,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.有這樣一段演繹推理:“對數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù),而y=${log}_{\frac{1}{2}}$x是對數(shù)函數(shù),所以y=${log}_{\frac{1}{2}}$x是增函數(shù)”.上面推理顯然是錯誤的,是因為( 。
A.大前提錯導(dǎo)致結(jié)論錯B.小前提錯導(dǎo)致結(jié)論錯
C.推理形式錯導(dǎo)致結(jié)論錯D.大前提和小前提錯導(dǎo)致結(jié)論錯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有線性相關(guān)關(guān)系的兩個變量x與y有如表對應(yīng)關(guān)系,則其線性回歸直線必過點( 。
x23456
y2.23.85.56.57.0
A.(4,5.5)B.(4,5)C.(5,5)D.(6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)(x-$\frac{2}{\sqrt{x}}$)6的展開式中x3的系數(shù)為A,則A的值為( 。
A.60B.-60C.15D.-15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-4)的單調(diào)遞減區(qū)間是(  )
A.(0,+∞)B.(-∞,-2)C.(2,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)y=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$+$\sqrt{cos2016π}$的值域是{0,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=4cos(θ+$\frac{π}{4}$).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點作曲線C的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A={x|x+1>0},B={x|x2+x-2<0},則A∪B=(  )
A.(-2,+∞)B.(-2,-1)C.(-1,1)D.(1,+∞)

查看答案和解析>>

同步練習(xí)冊答案