【題目】如圖,直線 平面 ,垂足為 ,正四面體(所有棱長(zhǎng)都相等的三棱錐) 的棱長(zhǎng)為2, 在平面 內(nèi), 是直線 上的動(dòng)點(diǎn),當(dāng) 的距離為最大時(shí),正四面體在平面 上的射影面積為

【答案】
【解析】如下圖所示,

中點(diǎn) , 中點(diǎn) ,連 , , ,易得 為等腰三角形,∴ ,而點(diǎn) 是以 為直徑的球面上的點(diǎn),∴ 的距離為四面體上以 為直徑的球面上的點(diǎn)到 的距離,故當(dāng) , 三點(diǎn)共線時(shí),最大距離 ,此時(shí) ,故投影為以 為底邊, 為高的等腰三角形,∴
先確定直線BC與動(dòng)點(diǎn)O的位置關(guān)系,得到最大距離是AD到球心的距離+半徑,再考慮取得最大距離時(shí)四面體的投影情況,即可求得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項(xiàng)和,a1 , a2 , a5成等比數(shù)列.
(Ⅰ)證明S1 , S3 , S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面為矩形的四棱椎P﹣ABCD中,PB⊥AB.

(1)證明:平面PBC⊥平面PCD;
(2)若異面直線PC與BD所成角為60°,PB=AB,PB⊥BC,求二面角B﹣PD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時(shí)滿足條件:
x∈R,f(x)<0或g(x)<0;
x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 )與直線 相切,設(shè)點(diǎn) 為圓上一動(dòng)點(diǎn), 軸于 ,且動(dòng)點(diǎn) 滿足 ,設(shè)動(dòng)點(diǎn) 的軌跡為曲線
(1)求曲線 的方程;
(2)直線 與直線 垂直且與曲線 交于 , 兩點(diǎn),求 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B是兩個(gè)非空集合,定義運(yùn)算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},則A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:x0∈R,m +2≤0,q:x∈R,x2-2mx+1>0,若p∨q為假命題,則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過(guò)4尾/立方米時(shí),v的值為2千克/年;當(dāng)4<x≤20時(shí),v是x的一次函數(shù),當(dāng)x達(dá)到20尾/立方米時(shí),因缺氧等原因,v的值為0千克/年.
(1)當(dāng)0<x≤20時(shí),求函數(shù)v關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣2x﹣8)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,﹣2)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(4,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案