14.直線y=k(x+2)-1恒過定點A,且點A在直線$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0)上,則2m+n的最小值為$\frac{9}{8}$.

分析 直線y=k(x+2)-1恒過定點A(-2,-1),把點A代入直線$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0),可得:$\frac{2}{m}$+$\frac{1}{n}$=8.再利用“乘1法”與基本不等式的性質即可得出.

解答 解:直線y=k(x+2)-1恒過定點A(-2,-1),
把點A代入直線$\frac{1}{m}$x+$\frac{1}{n}$y+8=0(m>0,n>0),可得:$\frac{-2}{m}$-$\frac{1}{n}$+8=0,化為$\frac{2}{m}$+$\frac{1}{n}$=8.
則2m+n=(2m+n)×$\frac{1}{8}$$(\frac{2}{m}+\frac{1}{n})$=$\frac{1}{8}$$(5+\frac{2n}{m}+\frac{2m}{n})$≥$\frac{1}{8}(5+2×2\sqrt{\frac{m}{n}×\frac{n}{m}})$=$\frac{9}{8}$,當且僅當m=n=$\frac{8}{3}$時取等號.
故答案為:$\frac{9}{8}$.

點評 本題考查了直線過定點問題、“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.D是△ABC邊AB上的中點,記$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{BA}$=$\overrightarrow b$,則向量$\overrightarrow{DC}$=( 。
A.$-\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$-\overrightarrow a+\frac{1}{2}\overrightarrow b$C.$\overrightarrow a-\frac{1}{2}\overrightarrow b$D.$\overrightarrow a+\frac{1}{2}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=cos2x-$\sqrt{3}$sinxcosx+1.
(1)求函數(shù)f(x)的周期,并求f(x)的單調遞增區(qū)間;
(2)若f(θ)=$\frac{5}{6}$,且 $\frac{π}{3}$<θ<$\frac{2π}{3}$,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,在復平面內,復數(shù)z1,z2對應的向量分別為$\overrightarrow{OA}$,$\overrightarrow{OB}$,則復數(shù)$\overline{z_1}$+2z2=( 。?
A.-2+iB.-2+3iC.1+2iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知正實數(shù)a,b滿足a+2b=1,則$\frac{1}{a}$+$\frac{a}$的最小值為( 。
A.1+2$\sqrt{2}$B.1+$\sqrt{2}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)=$\frac{1}{2^x}$;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設f(z)=$\overline{z}$,且z1=1+5i,z2=-3+2i,則f($\overline{{z}_{1}-{z}_{2}}$)的值是4+3i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=( 。
A.-1B.31C.-33D.-31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.$\int_{-a}^a{(xcosx+5sinx)}$dx=0.

查看答案和解析>>

同步練習冊答案