(2013·遼寧高考)如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點.
(1)求證:平面PAC⊥平面PBC.
(2)設Q為PA的中點,G為△AOC的重心,求證:QG∥平面PBC.
(1)見解析 (2)見解析
【解析】(1)由AB是圓的直徑,得AC⊥BC;
由PA垂直于圓O所在的平面,得PA⊥平面ABC;又BC?平面ABC,得PA⊥BC.
又PA∩AC=A,PA?平面PAC,AC?平面PAC,
所以BC⊥平面PAC,又BC?平面PBC,所以平面PAC⊥平面PBC.
(2)連接OG并延長交AC于M,
連接QM,QO.由G為△AOC的重心,知M為AC的中點,
由Q為PA的中點,則QM∥PC,
又O為AB中點,得OM∥BC.
因為QM∩MO=M,QM?平面QMO,
MO?平面QMO,BC∩PC=C,BC?平面PBC,PC?平面PBC,
所以平面QMO∥平面PBC.
因為QG?平面QMO,所以QG∥平面PBC.
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第五章 數(shù)列(解析版) 題型:選擇題
(2014·孝感模擬)已知函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值( )
A.恒為正數(shù) B.恒為負數(shù)
C.恒為0 D.可以為正數(shù)也可以為負數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第九章計數(shù)原理與概率隨機變量及其分布(解析版) 題型:選擇題
從某高中隨機選取5名高三男生,其身高和體重的數(shù)據(jù)如表所示:
身高x(cm) | 160 | 165 | 170 | 175 | 180 |
體重y(kg) | 63 | 66 | 70 | 72 | 74 |
根據(jù)上表可得回歸直線方程:=0.56x+,據(jù)此模型預報身高為172cm的高三男生的體重為( )
A.70.09kg B.70.12kg
C.70.55kg D.71.05kg
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題
(2014·保定模擬)若函數(shù)f(x)=sin(3x+φ),滿足f(a+x)=f(a-x),則f的值為____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題
(2014·宜昌模擬)在△ABC中,若=,則B的值為( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:填空題
(2014·荊州模擬)湖面上漂著一個小球,湖水結(jié)冰后將球取出,冰面上留下了一個直徑為12cm,深2cm的空穴,則該球的半徑是________cm,表面積是________cm2.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第七章 立體幾何(解析版) 題型:選擇題
已知圓錐的底面半徑為R,高為3R,在它的所有內(nèi)接圓柱中,全面積的最大值是( )
A.22πR2 B.πR2 C.πR2 D.πR2
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:填空題
已知y=f(x)+x2是奇函數(shù),且f(1)=1,若g(x)=f(x)+2,則g(-1)=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com