5.考察下列命題,在“___”處缺少一個條件,補上這個條件使其構(gòu)成正確命題(其中l(wèi),m為直線,α,β為平面),則此條件為1?α.
$\left.\begin{array}{l}{m?α}\\{l∥m}\\{_____}\end{array}\right\}$⇒l∥α

分析 根據(jù)線面平行的判定定理,我們知道要判斷線面平行需要三個條件:面內(nèi)一線,面外一線,線線平行,即可得到答案.

解答 解:對照已有條件,根據(jù)線面平行的判定定理可知缺少條件“1?α”.
故答案為:1?α.

點評 本題考查的知識點是直線與平面平行的判定,熟練掌握直線與平面平行判斷的方法及必要的條件是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-4≥0}\\{2y-3≤0}\end{array}\right.$,則z=$\frac{y+1}{x}$的取值范圍是[$\frac{5}{8}$,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù),求函數(shù)f(x)的解析式;
(2)已知x+x-1=3(x>1),求x2-x-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=2sin(x-$\frac{π}{6}}$)sin(x+$\frac{π}{3}}$),x∈R,則函數(shù)f(x)的最小正周期π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用秦九韶算法計算多項式f(x)=5x5+4x4+3x3+2x2+x+1當(dāng)x=4的值時,乘法運算的次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an+2-an+$\frac{1}{{a}_{n+1}-{a}_{n}}$,且數(shù)列{bn}的前n項和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.計算$\root{3}{(2-π)^{3}}$+$\sqrt{(3-π)^{2}}$的值為( 。
A.5B.-1C.2π-5D.5-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2為實數(shù);
(1)若點M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當(dāng)t1=1時,不論t2為何值,A、B、M三點共線;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面積為12,求a和t2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x2-1)定義域為[0,3],則f(2x-1)的定義域為( 。
A.[1,$\frac{3}{2}$]B.[0,$\frac{9}{2}$]C.[-3,15]D.[1,3]

查看答案和解析>>

同步練習(xí)冊答案