【題目】十九大提出:堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),做到精準(zhǔn)扶貧.某縣積極引導(dǎo)農(nóng)民種植一種名貴中藥材,從而大大提升了該縣村民的經(jīng)濟(jì)收入.2019年年底,該機(jī)構(gòu)從該縣種植的這種名貴藥材的農(nóng)戶(hù)中隨機(jī)抽取了100戶(hù),統(tǒng)計(jì)了他們2019年因種植,中藥材所獲純利潤(rùn)(單位:萬(wàn)元)的情況(假定農(nóng)戶(hù)因種植中藥材這一項(xiàng)一年最多獲利11萬(wàn)元),統(tǒng)計(jì)結(jié)果如下表所示:

1)由表可以認(rèn)為,該縣農(nóng)戶(hù)種植中藥材所獲純利潤(rùn)Z(單位:萬(wàn)元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點(diǎn)值),近似為樣本方差.若該縣有1萬(wàn)戶(hù)農(nóng)戶(hù)種植了該中藥材,試估算所獲純利潤(rùn)Z在區(qū)間(1.98.2)的戶(hù)數(shù);

2)為答謝廣大農(nóng)戶(hù)的積極參與,該調(diào)查機(jī)構(gòu)針對(duì)參與調(diào)查的農(nóng)戶(hù)舉行了抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則如下:在一箱子中放置5個(gè)除顏色外完全相同的小球,其中紅球1個(gè),黑球4個(gè).讓農(nóng)戶(hù)從箱子中隨機(jī)取出一個(gè)小球,若取到紅球,則抽獎(jiǎng)結(jié)束;若取到黑球,則將黑球放回箱中,讓他繼續(xù)取球,直到取到紅球?yàn)橹?/span>(取球次數(shù)不超過(guò)10).若農(nóng)戶(hù)取到紅球,則視為中獎(jiǎng),獲得2000元的獎(jiǎng)勵(lì),若一直未取到紅球,則視為不中獎(jiǎng).現(xiàn)農(nóng)戶(hù)張明參加了抽獎(jiǎng)活動(dòng),記他中獎(jiǎng)時(shí)取球的次數(shù)為隨機(jī)變量X,他取球的次數(shù)為隨機(jī)變量Y.

①證明:為等比數(shù)列;

②求Y的數(shù)學(xué)期望.(精確到0.001)

參考數(shù)據(jù):.若隨機(jī)變量.

【答案】1;(2)①證明見(jiàn)解析;②..

【解析】

(1)根據(jù)題意求出樣本平均數(shù)即可得出,則可根據(jù),求出其所獲純利潤(rùn)Z在區(qū)間(1.9,8.2)的戶(hù)數(shù);

(2) ①因?yàn)槊看稳∏蚨记∮?/span>的概率取到紅球,即,則可證明之.

②根據(jù)①所求的,根據(jù)當(dāng)時(shí),,代入,再利用錯(cuò)位相減求出其值即可.

1)由題意知:

所以樣本平均數(shù)為(萬(wàn)元),

所以,

所以

.

1萬(wàn)戶(hù)農(nóng)戶(hù)中,Z落在區(qū)間的戶(hù)數(shù)約為.

2)①每次取球都恰有的概率取到紅球.

則有,

,

為以為首項(xiàng)為公比的等比數(shù)列.

②由①可知,當(dāng)時(shí),,

.

Y的數(shù)學(xué)期望為

設(shè),

兩式作差得,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子有5個(gè)不同的小球,編號(hào)分別為1,2,3,4,5,從袋中一次取出三個(gè)球,記隨機(jī)變量是取出球的最大編號(hào)與最小編號(hào)的差,數(shù)學(xué)期望為,方差為則下列選項(xiàng)正確的是(

A.,B.,

C.,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高鐵是我國(guó)國(guó)家名片之一,高鐵的修建凝聚著中國(guó)人的智慧與汗水.如圖所示,B、EF為山腳兩側(cè)共線(xiàn)的三點(diǎn),在山頂A處測(cè)得這三點(diǎn)的俯角分別為、,計(jì)劃沿直線(xiàn)BF開(kāi)通穿山隧道,現(xiàn)已測(cè)得BC、DE、EF三段線(xiàn)段的長(zhǎng)度分別為31、2.

(1)求出線(xiàn)段AE的長(zhǎng)度;

(2)求出隧道CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,若問(wèn)題中的三角形存在,求的值;若問(wèn)題中的三角形不存在,說(shuō)明理由.

問(wèn)題:是否存在,它的內(nèi)角的對(duì)邊分別為,且,,________?

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】CES是世界上最大的消費(fèi)電子技術(shù)展,也是全球最大的消費(fèi)技術(shù)產(chǎn)業(yè)盛會(huì).2020CES消費(fèi)電子展于202017日—10日在美國(guó)拉斯維加斯舉辦.在這次CES消費(fèi)電子展上,我國(guó)某企業(yè)發(fā)布了全球首款彩色水墨屏閱讀手機(jī),驚艷了全場(chǎng).若該公司從7名員工中選出3名員工負(fù)責(zé)接待工作(3名員工的工作視為相同的工作),再選出2名員工分別在上午、下午講解該款手機(jī)性能,若其中甲和乙至多有1人負(fù)責(zé)接待工作,則不同的安排方案共有__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,其中.

(Ⅰ)寫(xiě)出直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn).若點(diǎn)恰為線(xiàn)段的三等分點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角,,的對(duì)邊分別為,,,.設(shè)為線(xiàn)段上一點(diǎn),,有下列條件:

;②;③.

請(qǐng)從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λk是常數(shù),若對(duì)一切正整數(shù)n,均有成立,則稱(chēng)此數(shù)列為“λ~k數(shù)列.

1)若等差數(shù)列“λ~1”數(shù)列,求λ的值;

2)若數(shù)列數(shù)列,且an0,求數(shù)列的通項(xiàng)公式;

3)對(duì)于給定的λ,是否存在三個(gè)不同的數(shù)列“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說(shuō)明理由,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線(xiàn)處切線(xiàn)的斜率為,判斷函數(shù)的單調(diào)性;

2)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案