5.521化為二進(jìn)制數(shù)是1000001001(2).

分析 利用“除k取余法”是將十進(jìn)制數(shù)除以2,然后將商繼續(xù)除以2,直到商為0,然后將依次所得的余數(shù)倒序排列即可得到答案.

解答 解:521÷2=260…1
260÷2=130…0
130÷2=65…0
65÷2=32…1
32÷2=16…0
16÷2=8…0
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故521(10)=1000001001(2).
故答案為:1000001001(2).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是十進(jìn)制與其它進(jìn)制之間的轉(zhuǎn)化,其中熟練掌握“除k取余法”的方法步驟是解答本題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=lnx+2x-6,若實(shí)數(shù)x0是函數(shù)f(x)的零點(diǎn),且0<x1<x0,則f(x1)的值( 。
A.恒為正B.等于零C.恒為負(fù)D.不小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(文)已知函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{2π}{3}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合M={x|x-2>0,x∈R},N={y|y=$\sqrt{{x}^{2}+1}$,x∈R},則M∩N=( 。
A.{x|x≥1}B.{x|1≤x<2}C.{x|x>2}D.{x|x>2或x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直線l1:ax+by+1=0,(a,b不同時(shí)為0),l2:(a-2)x+y+a=0,若b=0且l1⊥l2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.假設(shè)學(xué)生在高中時(shí)數(shù)學(xué)成績(jī)和物理成績(jī)是線性相關(guān)的,若5個(gè)學(xué)生在高一下學(xué)期某次考試中數(shù)學(xué)成績(jī)x和物理成績(jī)y(總分100分)如下:
學(xué)生ABCDE
數(shù)學(xué)8075706560
物理7066686462
(1)試求這次高一數(shù)學(xué)成績(jī)和物理成績(jī)間的線性回歸方程.
(2)若小紅這次考試的數(shù)學(xué)成績(jī)是52分,你估計(jì)她的物理成績(jī)是多少分呢?供參考的數(shù)據(jù):80×70+75×66+70×68+65×64+60×62=23190;802+752+702+652+602=24750.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知三棱錐O-ABC,OA=4,OB=5,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M,N分別是OA,BC的中點(diǎn),設(shè)$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c.
(Ⅰ)用a,b,c表示$\overrightarrow{MN}$和$\overrightarrow{AC}$;
(Ⅱ)求直線MN與直線AC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.$\frac{1}{3}$[$\frac{1}{2}$(2a+8b)-(4a-2b)]等于(  )
A.2a-bB.2b-aC.b-aD.-( b-a )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)a,b,c為△ABC中∠A,∠B,∠C的對(duì)邊.
求證:a,b,c成等差數(shù)列的充要條件是:$a{cos^2}\frac{C}{2}+c{cos^2}\frac{A}{2}=\frac{3}{2}b$.

查看答案和解析>>

同步練習(xí)冊(cè)答案