如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點
(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC
(1),;(2)
解析試題分析:(1)首先建立空間直角坐標(biāo)系,給出相關(guān)點的坐標(biāo),利用空間向量求解;(2) 利用空間向量求解平面的法向量,然后根據(jù)法向量互相垂直可證明
試題解析:(1)如圖,取AC的中點F,連接BF,則BF⊥AC 以A為坐標(biāo)原點,過A且與FB平行的直線為x軸,AC為y軸,AP為z軸,建立空間直角坐標(biāo)系
則A(0,0,0),B(,1,0), C(0,2,0),P(0,0,2),E(0,1,1),
從而=(,1, 2), =(0,1,1)
設(shè)直線AE與PB所成角為θ,
則cosθ=||=
即直線AE與PB所成角的余弦值為 5分
(2)如上圖,則
A(0,0,0),B(,1,0), C(0,2,0),P(0,0,),E(0,1,),
設(shè)平面PBC的法向量為,則
令,則,所以
同理可求平面ADE的法向量
所以,即
于是平面ADE⊥平面PBC
考點:空間直角坐標(biāo)系、空間向量、線線角以及面面垂直的證明
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰梯形中,是梯形的高,,,現(xiàn)將梯形沿折起,使,且,得一簡單組合體如圖所示,已知分別為的中點.
(1)求證:平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是直角梯形,,,和是兩個邊長為的正三角形,,為的中點,為的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com