2.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為2,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.36B.9C.72D.48

分析 由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,進(jìn)而可得答案.

解答 解:由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,
底面面積S=$\frac{1}{2}$×6×3=9,
棱錐的高h(yuǎn)=3,
故幾何體的體積V=$\frac{1}{3}Sh$=9,
故選:B

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.過(guò)橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)F2的直線與橢圓C相交于A,B兩點(diǎn).若$\overrightarrow{A{F}_{2}}$=$\overrightarrow{{F}_{2}B}$,則點(diǎn)A與左焦點(diǎn)F1的距離|AF1|=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}|?|{\begin{array}{l}e\\ f\end{array}}|=|{\begin{array}{l}{ae-bf}\\{ce-df}\end{array}}|$,例如$|{\begin{array}{l}1&2\\ 3&4\end{array}}|?|{\begin{array}{l}5\\ 6\end{array}}|=|{\begin{array}{l}{-7}\\{-9}\end{array}}|$.若已知$α+β=π,α-β=\frac{π}{2}$,則$|{\begin{array}{l}{sinα}&{cosα}\\{cosα}&{sinα}\end{array}}|?|{\begin{array}{l}{cosβ}\\{sinβ}\end{array}}|$=( 。
A.$|{\begin{array}{l}0\\ 1\end{array}}|$B.$|{\begin{array}{l}1\\ 0\end{array}}|$C.$|{\begin{array}{l}0\\ 0\end{array}}|$D.$|{\begin{array}{l}1\\{-1}\end{array}}|$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列說(shuō)法正確的是(  )
A.對(duì)立事件一定是互斥事件事件,互斥事件不一定是對(duì)立事件
B.A、B同時(shí)發(fā)生的概率一定比A、B中恰有一個(gè)發(fā)生的概率小
C.若P(A∪B)=P(A)+P(B)=1,則事件A與B是互斥且對(duì)立事件
D.事件A、B中至少有一個(gè)發(fā)生的概率一定比A、B中恰有一個(gè)發(fā)生的概率大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,已知在一個(gè)二面角的棱上有兩個(gè)點(diǎn)A、B,線段AC、BD分別在這個(gè)二面角的兩個(gè)面內(nèi),并且都垂直于棱AB,AB=4cm,AC=6cm,BD=8cm,CD=2$\sqrt{17}$cm,則這個(gè)二面角的度數(shù)為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)$y=\frac{1}{{\sqrt{x}}}$的定義域?yàn)榧螦,集合B={x|ax-1<0,a∈N*},集合$C=\{x|{log_{\frac{1}{2}}}x>1\}$,C是A∩B的真子集,求:
(1)A∩C;
(2)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.從一批蘋果中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表,如下:
分組(重量)[80,85)[85,90)[90,95)[95,100)
頻數(shù)(個(gè))x102015
(1)根據(jù)頻數(shù)分布表計(jì)算蘋果的重量在[90,95)的頻率;
(2)用分層抽樣的方法從重量在[80,85)和[95,100)的蘋果中共抽取4個(gè),其中重量在[80,85)的有幾個(gè)?
(3)在(2)中抽出的4個(gè)蘋果中,任取2個(gè),求重量之差的絕對(duì)值大于5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個(gè)焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{\sqrt{3}}{3}$,過(guò)F2的直線l與橢圓相交于A、B兩點(diǎn),若△AF1B的周長(zhǎng)為8$\sqrt{3}$,則橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知奇函數(shù)f(x)滿足f(x+1)=f(x),當(dāng)x∈(0,1)時(shí),f(x)=2x,則f(log210)等于$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案